論文の概要: Federated Continual Learning to Detect Accounting Anomalies in Financial
Auditing
- arxiv url: http://arxiv.org/abs/2210.15051v1
- Date: Wed, 26 Oct 2022 21:33:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 14:46:34.409198
- Title: Federated Continual Learning to Detect Accounting Anomalies in Financial
Auditing
- Title(参考訳): 財務監査における会計異常検出のための連立学習
- Authors: Marco Schreyer, Hamed Hemati, Damian Borth, and Miklos A. Vasarhelyi
- Abstract要約: 本稿では,分散クライアントから監査モデルを継続的に学習できるフェデレーション型継続的学習フレームワークを提案する。
組織活動の共通シナリオにおける会計異常を検知するフレームワークの能力を評価する。
- 参考スコア(独自算出の注目度): 1.2205797997133396
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The International Standards on Auditing require auditors to collect
reasonable assurance that financial statements are free of material
misstatement. At the same time, a central objective of Continuous Assurance is
the real-time assessment of digital accounting journal entries. Recently,
driven by the advances in artificial intelligence, Deep Learning techniques
have emerged in financial auditing to examine vast quantities of accounting
data. However, learning highly adaptive audit models in decentralised and
dynamic settings remains challenging. It requires the study of data
distribution shifts over multiple clients and time periods. In this work, we
propose a Federated Continual Learning framework enabling auditors to learn
audit models from decentral clients continuously. We evaluate the framework's
ability to detect accounting anomalies in common scenarios of organizational
activity. Our empirical results, using real-world datasets and combined
federated continual learning strategies, demonstrate the learned model's
ability to detect anomalies in audit settings of data distribution shifts.
- Abstract(参考訳): 国際監査基準(International Standards on Auditing)は、監査役に対し、財務諸表が物質的誤記のないことを合理的に保証することを要求する。
同時に、Continuous Assuranceの中心的な目的は、デジタル会計ジャーナルエントリのリアルタイム評価である。
近年、人工知能の進歩により、膨大な会計データを調べるための金融監査においてディープラーニング技術が登場している。
しかし、高度に適応した監査モデルを分散化および動的設定で学習することは依然として困難である。
複数のクライアントと期間にわたってデータ分散シフトを研究する必要がある。
本研究では,分散クライアントから監査モデルを継続的に学習できるフェデレーション型継続的学習フレームワークを提案する。
組織活動の共通シナリオにおける会計異常を検知するフレームワークの能力を評価する。
実世界のデータセットと連合型連続学習戦略を組み合わせた実験結果は,データ分散シフトの監査設定における学習モデルの異常検出能力を示す。
関連論文リスト
- Temporal-Difference Variational Continual Learning [89.32940051152782]
現実世界のアプリケーションにおける機械学習モデルの重要な機能は、新しいタスクを継続的に学習する能力である。
継続的な学習設定では、モデルは以前の知識を保持することで新しいタスクの学習のバランスをとるのに苦労することが多い。
複数の先行推定の正則化効果を統合する新たな学習目標を提案する。
論文 参考訳(メタデータ) (2024-10-10T10:58:41Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights [67.72413262980272]
大規模なデータ不均衡は、Webスケールの視覚言語データセットの間に自然に存在する。
事前学習したCLIPは、教師付き学習と比較してデータ不均衡に顕著な堅牢性を示す。
CLIPの堅牢性と差別性は、より記述的な言語監督、より大きなデータスケール、より広いオープンワールドの概念によって改善される。
論文 参考訳(メタデータ) (2024-05-31T17:57:24Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
合成データセットとAIモデルを包括的に評価する総合監査フレームワークを導入する。
バイアスや差別の防止、ソースデータへの忠実性の確保、実用性、堅牢性、プライバシ保護などに焦点を当てている。
多様なユースケースにまたがる様々な生成モデルを監査することにより,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-21T09:03:18Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - Knowledge-Aware Federated Active Learning with Non-IID Data [75.98707107158175]
本稿では,アノテーション予算に制限のあるグローバルモデルを効率的に学習するための,連合型アクティブラーニングパラダイムを提案する。
フェデレートされたアクティブラーニングが直面する主な課題は、サーバ上のグローバルモデルのアクティブサンプリング目標と、ローカルクライアントのアクティブサンプリング目標とのミスマッチである。
本稿では,KSAS (Knowledge-Aware Federated Active Learning) とKCFU (Knowledge-Compensatory Federated Update) を組み合わせた,知識対応型アクティブ・ラーニング(KAFAL)を提案する。
論文 参考訳(メタデータ) (2022-11-24T13:08:43Z) - RESHAPE: Explaining Accounting Anomalies in Financial Statement Audits
by enhancing SHapley Additive exPlanations [1.3333957453318743]
本稿では,集約属性レベルのモデル出力を説明するRESHAPEを提案する。
以上の結果から,RESHAPEは最先端のベースラインと比較して多目的に説明できるという実証的証拠が得られた。
金融監査における非教師なしDL技術導入の次のステップとして,このような属性レベルの説明を想定する。
論文 参考訳(メタデータ) (2022-09-19T16:23:43Z) - Federated and Privacy-Preserving Learning of Accounting Data in
Financial Statement Audits [1.4986031916712106]
本稿では,複数のクライアントの関連会計データを監査する上で,DLモデルを訓練するためのフェデレートラーニングフレームワークを提案する。
都市給付の実際の3つのデータセットにおける会計異常を検出するためのアプローチを評価する。
論文 参考訳(メタデータ) (2022-08-26T15:09:18Z) - Continual Learning for Unsupervised Anomaly Detection in Continuous
Auditing of Financial Accounting Data [1.9659095632676094]
国際監査基準では、財務諸表の根底にある会計ジャーナルの項目を直接評価する必要がある。
大量のジャーナルエントリデータを調べるために、ディープラーニングにインスパイアされた監査技術が出現した。
本研究は、両課題を克服し、ジャーナルエントリデータエクスペリエンスのストリームから学ぶように設計された連続的異常検出フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-25T09:21:14Z) - Multi-view Contrastive Self-Supervised Learning of Accounting Data
Representations for Downstream Audit Tasks [1.9659095632676094]
国際監査基準では、財務諸表の根底にある会計取引を直接評価する必要がある。
ディープラーニングにインスパイアされた監査技術は、大量のジャーナルエントリデータを監査する分野に現れている。
本研究では,監査タスク不変な会計データ表現の学習を目的とした,自己指導型自己学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-23T08:16:31Z) - Learning Sampling in Financial Statement Audits using Vector Quantised
Autoencoder Neural Networks [1.2205797997133396]
本稿では,Vector Quantized-Variational Autoencoder (VQ-VAE) ニューラルネットワークの応用を提案する。
実世界の2つの決済データセットに基づいて、そのようなニューラルネットワークが会計データの定量化表現を学習できることを実証する。
論文 参考訳(メタデータ) (2020-08-06T09:02:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。