論文の概要: Optimal Sub-sampling to Boost Power of Kernel Sequential Change-point
Detection
- arxiv url: http://arxiv.org/abs/2210.15060v1
- Date: Wed, 26 Oct 2022 22:05:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 15:04:25.381431
- Title: Optimal Sub-sampling to Boost Power of Kernel Sequential Change-point
Detection
- Title(参考訳): カーネルシーケンシャル変化点検出のパワー向上のための最適サブサンプリング
- Authors: Song Wei, Chaofan Huang, Yao Xie
- Abstract要約: 本稿では,カーネルの最大平均誤差に基づく逐次変化点検出のための検出能力を向上する新しい手法を提案する。
提案手法は,膨大な履歴データから得られたランダムなサブサンプルによる損失に対処するため,検出手順の前に履歴データの最適なサブサンプリングを行う。
- 参考スコア(独自算出の注目度): 10.969806056391004
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a novel scheme to boost detection power for kernel maximum mean
discrepancy based sequential change-point detection procedures. Our proposed
scheme features an optimal sub-sampling of the history data before the
detection procedure, in order to tackle the power loss incurred by the random
sub-sample from the enormous history data. We apply our proposed scheme to both
Scan $B$ and Kernel Cumulative Sum (CUSUM) procedures, and improved performance
is observed from extensive numerical experiments.
- Abstract(参考訳): 本稿では,カーネルの最大平均誤差に基づく逐次変化点検出のための検出能力向上手法を提案する。
提案手法では,膨大な履歴データからのランダムサブサンプルによる電力損失に対処するため,検出手順前の履歴データの最適サブサンプリングを特徴としている。
提案手法をScan $B$ と Kernel Cumulative Sum (CUSUM) の2つの手順に適用し,広範囲な数値実験から性能改善を観察した。
関連論文リスト
- Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
ガウス過程シュロゲートモデルの精度を高めるために、ランダムな探索ステップに依存する新しいノイズフリーベイズ最適化戦略。
新しいアルゴリズムは、古典的なGP-UCBの実装の容易さを維持しているが、さらなる探索がそれらの収束を促進する。
論文 参考訳(メタデータ) (2024-01-30T14:16:06Z) - Optimal Budgeted Rejection Sampling for Generative Models [54.050498411883495]
判別器を用いた生成モデルの性能向上のために, 還元サンプリング法が提案されている。
提案手法は,まず,最適に最適である最適予算削減サンプリング方式を提案する。
第2に,モデル全体の性能を高めるために,サンプリング方式をトレーニング手順に組み込んだエンドツーエンド手法を提案する。
論文 参考訳(メタデータ) (2023-11-01T11:52:41Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Online Kernel CUSUM for Change-Point Detection [12.383181837411469]
本稿では,変化点検出のための計算効率の良いオンラインカーネルCumulative Sum (CUSUM) を提案する。
提案手法は,既存のカーネルベースの変更点検出法と比較して,小さな変更に対する感度の向上を示す。
論文 参考訳(メタデータ) (2022-11-28T05:08:30Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - Efficient Neural Network Analysis with Sum-of-Infeasibilities [64.31536828511021]
凸最適化における総和係数法に着想を得て,広範な分岐関数を持つネットワーク上での検証クエリを解析するための新しい手法を提案する。
標準ケース分析に基づく完全探索手順の拡張は、各検索状態で実行される凸手順をDeepSoIに置き換えることによって達成できる。
論文 参考訳(メタデータ) (2022-03-19T15:05:09Z) - SelectAugment: Hierarchical Deterministic Sample Selection for Data
Augmentation [72.58308581812149]
そこで我々は,SelectAugmentと呼ばれる効果的な手法を提案し,決定論的かつオンラインに拡張するサンプルを選択する。
具体的には、各バッチにおいて、まず増分比率を決定し、次にこの比で各トレーニングサンプルを増分するかを決定する。
これにより、サンプルを増量する際のランダム性による負の効果を効果的に軽減し、DAの有効性を向上させることができる。
論文 参考訳(メタデータ) (2021-12-06T08:38:38Z) - Unsupervised learning of disentangled representations in deep restricted
kernel machines with orthogonality constraints [15.296955630621566]
Constr-DRKMは、非教師なしデータ表現の学習のためのディープカーネル手法である。
本研究では,不整合特徴学習における提案手法の有効性を定量的に評価する。
論文 参考訳(メタデータ) (2020-11-25T11:40:10Z) - Bayesian Coresets: Revisiting the Nonconvex Optimization Perspective [30.963638533636352]
コアセット選択のための新しいアルゴリズムを提案し,解析する。
本研究では,様々なベンチマークデータセットに対して,明示的な収束率保証と経験的評価を行う。
論文 参考訳(メタデータ) (2020-07-01T19:34:59Z) - Robust Sampling in Deep Learning [62.997667081978825]
ディープラーニングは、オーバーフィッティングを減らし、一般化を改善するために正規化メカニズムを必要とする。
分散ロバスト最適化に基づく新しい正規化手法によりこの問題に対処する。
トレーニング中は、最悪のサンプルが最適化に最も貢献するものであるように、その正確性に応じてサンプルの選択が行われる。
論文 参考訳(メタデータ) (2020-06-04T09:46:52Z) - Sequential Adversarial Anomaly Detection for One-Class Event Data [18.577418448786634]
本稿では,異常なシーケンスのみを利用できる場合の1クラス設定における逐次異常検出問題について考察する。
生成器から最悪のケース列に対して最適な検出器を見つけるために,ミニマックス問題を解くことで,逆数列検出器を提案する。
論文 参考訳(メタデータ) (2019-10-21T06:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。