論文の概要: Weakly Supervised Test-Time Domain Adaptation for Object Detection
- arxiv url: http://arxiv.org/abs/2407.05607v1
- Date: Mon, 8 Jul 2024 04:44:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 17:00:01.975667
- Title: Weakly Supervised Test-Time Domain Adaptation for Object Detection
- Title(参考訳): オブジェクト検出のための弱修正テスト時間領域適応法
- Authors: Anh-Dzung Doan, Bach Long Nguyen, Terry Lim, Madhuka Jayawardhana, Surabhi Gupta, Christophe Guettier, Ian Reid, Markus Wagner, Tat-Jun Chin,
- Abstract要約: 監視などの応用では、通常は人間のオペレーターがシステムの操作を監督する。
完全自動適応により達成可能な範囲を超えて、オブジェクト検出の性能を高めるために、テスト時間領域適応に演算子を関与させることを提案する。
提案手法は既存の手法よりも優れており, ループ内テスト時間領域適応の優れた利点を示す。
- 参考スコア(独自算出の注目度): 23.89166024655107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prior to deployment, an object detector is trained on a dataset compiled from a previous data collection campaign. However, the environment in which the object detector is deployed will invariably evolve, particularly in outdoor settings where changes in lighting, weather and seasons will significantly affect the appearance of the scene and target objects. It is almost impossible for all potential scenarios that the object detector may come across to be present in a finite training dataset. This necessitates continuous updates to the object detector to maintain satisfactory performance. Test-time domain adaptation techniques enable machine learning models to self-adapt based on the distributions of the testing data. However, existing methods mainly focus on fully automated adaptation, which makes sense for applications such as self-driving cars. Despite the prevalence of fully automated approaches, in some applications such as surveillance, there is usually a human operator overseeing the system's operation. We propose to involve the operator in test-time domain adaptation to raise the performance of object detection beyond what is achievable by fully automated adaptation. To reduce manual effort, the proposed method only requires the operator to provide weak labels, which are then used to guide the adaptation process. Furthermore, the proposed method can be performed in a streaming setting, where each online sample is observed only once. We show that the proposed method outperforms existing works, demonstrating a great benefit of human-in-the-loop test-time domain adaptation. Our code is publicly available at https://github.com/dzungdoan6/WSTTA
- Abstract(参考訳): デプロイ前に、オブジェクト検出器は、以前のデータ収集キャンペーンからコンパイルされたデータセットでトレーニングされる。
しかし、特に照明、天気、季節の変化がシーンの外観や対象物に大きく影響する屋外環境では、対象検出器が展開される環境は必ず進化する。
オブジェクト検出器が有限のトレーニングデータセットに現れる可能性があるすべての潜在的なシナリオでは、ほとんど不可能である。
これにより、良好な性能を維持するために、オブジェクト検出器の継続的な更新が必要である。
テスト時間領域適応技術により、テストデータの分布に基づいて機械学習モデルを自己適応することができる。
しかし、既存の手法は主に完全自動適応に焦点を当てており、自動運転車のような応用には理にかなっている。
完全に自動化されたアプローチが普及しているにもかかわらず、監視のようないくつかのアプリケーションでは、通常はシステムの運用を監督する人間のオペレータが存在する。
完全自動適応により達成可能な範囲を超えて、オブジェクト検出の性能を高めるために、テスト時間領域適応に演算子を関与させることを提案する。
手作業の労力を減らすため、提案手法はオペレーターに弱いラベルを提供することのみを要求し、それを適応プロセスのガイドに使用する。
さらに,提案手法はストリーミング環境で実施でき,各オンラインサンプルを1回だけ観察することができる。
提案手法は既存の手法よりも優れており, ループ内テスト時間領域適応の優れた利点を示す。
私たちのコードはhttps://github.com/dzungdoan6/WSTTAで公開されています。
関連論文リスト
- DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - STFAR: Improving Object Detection Robustness at Test-Time by
Self-Training with Feature Alignment Regularization [35.16122933158808]
ドメイン適応は、分散シフトを伴うドメインデータをターゲットにするオブジェクト検出モデルを一般化するのに役立ちます。
テスト時,すなわちテスト時適応(TTAOD)におけるオブジェクト検出モデルの適用について検討する。
提案手法は,テスト時間適応オブジェクト検出タスクに最先端を設定できる。
論文 参考訳(メタデータ) (2023-03-31T10:04:44Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
自動運転車はエンドユーザー環境に一般化し、確実に動作させなければならない。
潜在的な解決策の1つは、エンドユーザの環境から収集されたラベルのないデータを活用することである。
適応過程を監督する信頼性のある信号はターゲット領域に存在しない。
この単純な仮定は、ターゲット領域上の3次元物体検出器の反復的自己学習を可能にする強力な信号を得るのに十分であることを示す。
論文 参考訳(メタデータ) (2023-03-27T15:07:55Z) - Domain Adaptive Object Detection for Autonomous Driving under Foggy
Weather [25.964194141706923]
本稿では,霧気候下での自律走行のための新しい領域適応型物体検出フレームワークを提案する。
本手法は画像レベルの適応とオブジェクトレベルの適応を両立させ,画像スタイルとオブジェクトの外観における領域差を低減させる。
評価実験の結果,提案手法の有効性と精度が示された。
論文 参考訳(メタデータ) (2022-10-27T05:09:10Z) - Interactron: Embodied Adaptive Object Detection [18.644357684104662]
インタラクティブな環境下での適応オブジェクト検出手法であるInteractronを提案する。
私たちの考えは、推論中のトレーニングを継続し、環境との対話を通じて明確な監督なしに、テスト時にモデルを適応させることです。
論文 参考訳(メタデータ) (2022-02-01T18:56:14Z) - Self-Supervision & Meta-Learning for One-Shot Unsupervised Cross-Domain
Detection [0.0]
本研究では, 対象サンプルを1つだけ使用して, ドメイン間の教師なし適応を実現できるオブジェクト検出アルゴリズムを提案する。
メタラーニングを利用して、単サンプルのクロスドメイン学習エピソードをシミュレートし、テスト条件の整合性を向上する。
論文 参考訳(メタデータ) (2021-06-07T10:33:04Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
物体検出器の分布外一般化を改善するための補助的自己監視タスクの有効性を検討する。
最大エントロピーの原理に触発されて,新しい自己監督タスクであるインスタンスレベル時間サイクル混乱(cycconf)を導入する。
それぞれのオブジェクトに対して、タスクは、ビデオ内の隣接するフレームで最も異なるオブジェクトの提案を見つけ、自己スーパービジョンのために自分自身にサイクルバックすることです。
論文 参考訳(メタデータ) (2021-04-16T21:35:08Z) - Multi-Target Domain Adaptation via Unsupervised Domain Classification
for Weather Invariant Object Detection [1.773576418078547]
トレーニング画像の天候がテスト画像と異なる場合、オブジェクト検出器の性能は著しく低下する。
マルチターゲットドメインへの単一ターゲットドメイン適応手法の一般化に使用できる新しい教師なしドメイン分類法を提案する。
本研究では,Cityscapesデータセットとその合成変種について実験を行った。
霧、雨、夜。
論文 参考訳(メタデータ) (2021-03-25T16:59:35Z) - Unsupervised Domain Adaptation for Spatio-Temporal Action Localization [69.12982544509427]
S時間動作の局所化はコンピュータビジョンにおいて重要な問題である。
本稿では、エンドツーエンドの教師なしドメイン適応アルゴリズムを提案する。
空間的特徴と時間的特徴を別々にあるいは共同的に適応した場合に,顕著な性能向上が達成できることを示す。
論文 参考訳(メタデータ) (2020-10-19T04:25:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。