論文の概要: Low-Rank Modular Reinforcement Learning via Muscle Synergy
- arxiv url: http://arxiv.org/abs/2210.15479v1
- Date: Wed, 26 Oct 2022 16:01:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 13:27:07.259388
- Title: Low-Rank Modular Reinforcement Learning via Muscle Synergy
- Title(参考訳): 筋シナジーによる低ランクモジュール強化学習
- Authors: Heng Dong, Tonghan Wang, Jiayuan Liu, Chongjie Zhang
- Abstract要約: モジュール強化学習(RL)は、アクチュエータごとに学習ポリシーを学習することで、多関節ロボットの制御を分散化する。
ロボット制御におけるDoFの冗長性を利用したSOLAR(Synergy-Oriented LeARning)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 25.120547719120765
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Modular Reinforcement Learning (RL) decentralizes the control of multi-joint
robots by learning policies for each actuator. Previous work on modular RL has
proven its ability to control morphologically different agents with a shared
actuator policy. However, with the increase in the Degree of Freedom (DoF) of
robots, training a morphology-generalizable modular controller becomes
exponentially difficult. Motivated by the way the human central nervous system
controls numerous muscles, we propose a Synergy-Oriented LeARning (SOLAR)
framework that exploits the redundant nature of DoF in robot control. Actuators
are grouped into synergies by an unsupervised learning method, and a synergy
action is learned to control multiple actuators in synchrony. In this way, we
achieve a low-rank control at the synergy level. We extensively evaluate our
method on a variety of robot morphologies, and the results show its superior
efficiency and generalizability, especially on robots with a large DoF like
Humanoids++ and UNIMALs.
- Abstract(参考訳): モジュール強化学習(rl)は、各アクチュエータの学習ポリシーにより、マルチジョイントロボットの制御を分散させる。
モジュラーrlに関する以前の研究は、共用アクチュエータポリシーで形態的に異なるエージェントを制御できることを証明した。
しかし,ロボットの自由度(dof)の増大に伴い,形態を一般化したモジュラーコントローラの訓練が指数関数的に困難になる。
人間の中枢神経系が多数の筋肉を制御する方法に触発され,ロボット制御におけるDoFの冗長性を利用したSOLAR(Synergy-Oriented Learning)フレームワークを提案する。
アクチュエータは教師なし学習法によりシナジーにグループ化され、複数のアクチュエータを同期で制御するためにシナジー動作が学習される。
このようにして,シマージレベルで低ランク制御を実現する。
提案手法は様々なロボット形態について広範囲に評価し,その効率性と一般化性,特にHumanoids++やUNIMALのような大きなDoFを持つロボットについて検討した。
関連論文リスト
- Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
強化学習はそのようなロボットコントローラを開発するための強力なフレームワークである。
分類分布を用いたマルチモーダル探索手法を提案する。
学習したポリシは外部の障害や観測ノイズに対して堅牢であり、複数のプッシュ器でタスクにスケールできることが示される。
論文 参考訳(メタデータ) (2023-08-04T16:55:00Z) - Decentralized Motor Skill Learning for Complex Robotic Systems [5.669790037378093]
本稿では,分散モータスキル(DEMOS)学習アルゴリズムを提案する。
本手法は, 性能を犠牲にすることなく, 政策の堅牢性と一般化を向上する。
四足歩行ロボットとヒューマノイドロボットの実験は、学習方針が局所的な運動障害に対して堅牢であり、新しいタスクに移行できることを示した。
論文 参考訳(メタデータ) (2023-06-30T05:55:34Z) - Universal Morphology Control via Contextual Modulation [52.742056836818136]
異なるロボット形態をまたいだ普遍的なポリシーの学習は、継続的な制御における学習効率と一般化を著しく向上させることができる。
既存の手法では、グラフニューラルネットワークやトランスフォーマーを使用して、異種状態と異なる形態のアクション空間を処理する。
本稿では,この依存関係を文脈変調によりモデル化する階層型アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-22T00:04:12Z) - Deep Whole-Body Control: Learning a Unified Policy for Manipulation and
Locomotion [25.35885216505385]
装着されたアームは、移動操作タスクへの脚付きロボットの適用性を著しく向上させることができる。
このような手足のマニピュレータのための標準的な階層制御パイプラインは、コントローラを操作と移動のものと分離することである。
我々は、強化学習を用いて、足のマニピュレータの全身制御のための統一的なポリシーを学習する。
論文 参考訳(メタデータ) (2022-10-18T17:59:30Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Scalable Task-Driven Robotic Swarm Control via Collision Avoidance and
Learning Mean-Field Control [23.494528616672024]
我々は、最先端平均場制御技術を用いて、多くのエージェントSwarm制御を分散の古典的な単一エージェント制御に変換する。
そこで我々は,衝突回避と平均場制御の学習を,知的ロボット群動作を牽引的に設計するための統一的な枠組みに統合する。
論文 参考訳(メタデータ) (2022-09-15T16:15:04Z) - Human-AI Shared Control via Frequency-based Policy Dissection [34.0399894373716]
人間-AI共有制御は、複雑な環境で制御タスクを達成するために、人間がAIと対話し、協力することを可能にする。
従来の強化学習(RL)手法は、人間の制御可能なポリシーを達成するために目標条件付き設計を試みる。
我々は、学習したニューラルコントローラの中間表現とエージェント動作の運動特性を整合させる、TextitPolicy Dissectionと呼ばれるシンプルで効果的な周波数ベースのアプローチを開発した。
論文 参考訳(メタデータ) (2022-05-31T23:57:55Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
サンプルベースの学習が可能な効果的なダイナミクスモデルを構築します。
リー代数ベクトル空間上のダイナミクスの学習は、直接状態遷移モデルを学ぶよりも効果的であることを示す。
この研究は、ダイナミクスの学習とリー群の性質の関連性を明らかにし、新たな研究の方向への扉を開く。
論文 参考訳(メタデータ) (2021-04-07T01:08:18Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
本稿では,ロボットによるバイマニュアル操作のための深層模倣学習フレームワークを提案する。
中心となる課題は、操作スキルを異なる場所にあるオブジェクトに一般化することである。
i)マルチモーダルダイナミクスを要素運動プリミティブに分解し、(ii)リカレントグラフニューラルネットワークを用いて各プリミティブをパラメータ化して相互作用を捕捉し、(iii)プリミティブを逐次的に構成する高レベルプランナと、プリミティブダイナミクスと逆運動学制御を組み合わせた低レベルコントローラを統合することを提案する。
論文 参考訳(メタデータ) (2020-10-11T01:40:03Z) - Populations of Spiking Neurons for Reservoir Computing: Closed Loop
Control of a Compliant Quadruped [64.64924554743982]
本稿では,ニューラルネットワークを用いた中央パターン生成機構を実装し,閉ループロボット制御を実現するためのフレームワークを提案する。
本研究では,従順な四足歩行ロボットのシミュレーションモデル上で,予め定義された歩行パターン,速度制御,歩行遷移の学習を実演する。
論文 参考訳(メタデータ) (2020-04-09T14:32:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。