論文の概要: Decentralized Motor Skill Learning for Complex Robotic Systems
- arxiv url: http://arxiv.org/abs/2306.17411v1
- Date: Fri, 30 Jun 2023 05:55:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-03 13:33:34.110970
- Title: Decentralized Motor Skill Learning for Complex Robotic Systems
- Title(参考訳): 複合ロボットシステムのための分散モータスキル学習
- Authors: Yanjiang Guo, Zheyuan Jiang, Yen-Jen Wang, Jingyue Gao, Jianyu Chen
- Abstract要約: 本稿では,分散モータスキル(DEMOS)学習アルゴリズムを提案する。
本手法は, 性能を犠牲にすることなく, 政策の堅牢性と一般化を向上する。
四足歩行ロボットとヒューマノイドロボットの実験は、学習方針が局所的な運動障害に対して堅牢であり、新しいタスクに移行できることを示した。
- 参考スコア(独自算出の注目度): 5.669790037378093
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) has achieved remarkable success in complex
robotic systems (eg. quadruped locomotion). In previous works, the RL-based
controller was typically implemented as a single neural network with
concatenated observation input. However, the corresponding learned policy is
highly task-specific. Since all motors are controlled in a centralized way,
out-of-distribution local observations can impact global motors through the
single coupled neural network policy. In contrast, animals and humans can
control their limbs separately. Inspired by this biological phenomenon, we
propose a Decentralized motor skill (DEMOS) learning algorithm to automatically
discover motor groups that can be decoupled from each other while preserving
essential connections and then learn a decentralized motor control policy. Our
method improves the robustness and generalization of the policy without
sacrificing performance. Experiments on quadruped and humanoid robots
demonstrate that the learned policy is robust against local motor malfunctions
and can be transferred to new tasks.
- Abstract(参考訳): 強化学習(RL)は複雑なロボットシステム(例えば四足歩行)において顕著な成功を収めた。
以前の研究では、rlベースのコントローラは通常、連続した観測入力を持つ単一のニューラルネットワークとして実装されていた。
しかし、対応する学習方針はタスク固有のものである。
すべてのモーターは集中的に制御されるため、アウトオブディストリビューションの局所観測は単一の結合ニューラルネットワークポリシを通じてグローバルモーターに影響を与える可能性がある。
対照的に、動物と人間は別々に手足を制御することができる。
この生物学的現象にインスパイアされたDEMOS学習アルゴリズムは,本質的な接続を保ちながら相互に疎結合可能なモータ群を自動的に検出し,分散モータ制御ポリシーを学習する。
本手法は性能を犠牲にすることなくポリシーの堅牢性と一般化を改善する。
四足歩行ロボットとヒューマノイドロボットの実験は、学習方針が局所的な運動障害に対して堅牢であり、新しいタスクに移行できることを示した。
関連論文リスト
- Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
本稿では,その問題に対する学習可能なパーセプション・アクション・コミュニケーション(LPAC)アーキテクチャを提案する。
CNNは局所認識を処理する。グラフニューラルネットワーク(GNN)はロボットのコミュニケーションを促進する。
評価の結果,LPACモデルは標準分散型および集中型カバレッジ制御アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-01-10T00:08:00Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
自己指導型学習は、制御戦略を学ぶのに必要な人間のアノテーションとエンジニアリングの労力を減らす可能性がある。
我々の研究は、強化学習(RL)自体が自己監督的な問題であることを示す先行研究に基づいている。
コントラスト学習に基づく自己教師付きRLアルゴリズムは,実世界の画像に基づくロボット操作タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2023-06-06T01:36:56Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Low-Rank Modular Reinforcement Learning via Muscle Synergy [25.120547719120765]
モジュール強化学習(RL)は、アクチュエータごとに学習ポリシーを学習することで、多関節ロボットの制御を分散化する。
ロボット制御におけるDoFの冗長性を利用したSOLAR(Synergy-Oriented LeARning)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-26T16:01:31Z) - Human-AI Shared Control via Frequency-based Policy Dissection [34.0399894373716]
人間-AI共有制御は、複雑な環境で制御タスクを達成するために、人間がAIと対話し、協力することを可能にする。
従来の強化学習(RL)手法は、人間の制御可能なポリシーを達成するために目標条件付き設計を試みる。
我々は、学習したニューラルコントローラの中間表現とエージェント動作の運動特性を整合させる、TextitPolicy Dissectionと呼ばれるシンプルで効果的な周波数ベースのアプローチを開発した。
論文 参考訳(メタデータ) (2022-05-31T23:57:55Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
感覚運動制御における現在の主流パラダイムは、模倣であれ強化学習であれ、生の行動空間で政策を直接訓練することである。
軌道分布空間の予測を行うニューラル・ダイナミック・ポリシー(NDP)を提案する。
NDPは、いくつかのロボット制御タスクにおいて、効率と性能の両面で、これまでの最先端よりも優れている。
論文 参考訳(メタデータ) (2020-12-04T18:59:32Z) - Towards General and Autonomous Learning of Core Skills: A Case Study in
Locomotion [19.285099263193622]
我々は,足の広いロボットに対して,洗練された移動動作を学習できる学習フレームワークを開発した。
我々の学習フレームワークは、データ効率のよいマルチタスクRLアルゴリズムと、ロボット間で意味論的に同一の報酬関数のセットに依存している。
現実世界の四足ロボットを含む9種類のロボットに対して、同じアルゴリズムが、多種多様な再利用可能な運動スキルを迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2020-08-06T08:23:55Z) - AirCapRL: Autonomous Aerial Human Motion Capture using Deep
Reinforcement Learning [38.429105809093116]
自律型空中人体モーションキャプチャ(MoCap)のための深部強化学習(RL)に基づくマルチロボット生成コントローラを提案する。
視覚に基づくMoCapに焦点をあて,体ポーズの軌跡を推定し,複数の空飛ぶ車を用いて1人の動く人物を形作る。
論文 参考訳(メタデータ) (2020-07-13T12:30:31Z) - Decentralized Deep Reinforcement Learning for a Distributed and Adaptive
Locomotion Controller of a Hexapod Robot [0.6193838300896449]
昆虫運動制御において,異なる脚の協調のための分散型組織を提案する。
同時的な局所構造は、歩行行動を改善することができる。
論文 参考訳(メタデータ) (2020-05-21T11:40:37Z) - Learning to Walk in the Real World with Minimal Human Effort [80.7342153519654]
我々は,人間の努力を最小限に抑えて,現実世界の深いRLを用いた足の移動ポリシーを学習するシステムを開発した。
人間の介入がほとんどないミニチュアロボットにおいて,ロボットの移動スキルを自動的かつ効率的に学習することができる。
論文 参考訳(メタデータ) (2020-02-20T03:36:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。