論文の概要: Beyond Homophily with Graph Echo State Networks
- arxiv url: http://arxiv.org/abs/2210.15731v1
- Date: Thu, 27 Oct 2022 19:25:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 16:43:40.164787
- Title: Beyond Homophily with Graph Echo State Networks
- Title(参考訳): グラフエコー状態ネットワークによるHomophilyを超えて
- Authors: Domenico Tortorella, Alessio Micheli
- Abstract要約: 我々は,ノード分類タスクにおいて,次数の相同性を持つグラフエコー状態ネットワーク(GESN)を初めて評価した。
実験の結果, 貯水池モデルでは, 十分に訓練された深部モデルに対して, より優れた精度あるいは同等の精度が得られることがわかった。
- 参考スコア(独自算出の注目度): 11.52174067809364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Echo State Networks (GESN) have already demonstrated their efficacy and
efficiency in graph classification tasks. However, semi-supervised node
classification brought out the problem of over-smoothing in end-to-end trained
deep models, which causes a bias towards high homophily graphs. We evaluate for
the first time GESN on node classification tasks with different degrees of
homophily, analyzing also the impact of the reservoir radius. Our experiments
show that reservoir models are able to achieve better or comparable accuracy
with respect to fully trained deep models that implement ad hoc variations in
the architectural bias, with a gain in terms of efficiency.
- Abstract(参考訳): グラフエコー状態ネットワーク(GESN)はすでに、グラフ分類タスクの有効性と効率を実証している。
しかし、半教師付きノード分類は、エンドツーエンドの訓練された深層モデルの過度な平滑化の問題を引き起こし、高いホモフィリーグラフへのバイアスを引き起こす。
本研究はGESNのノード分類タスクにおけるホモフィリーの度合いを初めて評価し,貯水池半径の影響も分析した。
実験では,アーキテクチャバイアスのアドホックなバリエーションを実装した十分に訓練された深層モデルに対して,リザーバモデルの方が精度が向上し,効率が向上することを示した。
関連論文リスト
- Gradformer: Graph Transformer with Exponential Decay [69.50738015412189]
グラフ変換器(GT)の自己保持機構は、グラフの帰納バイアス、特に構造に関するバイアスを見落としている。
本稿では,GTと本質的帰納バイアスを革新的に統合するGradformerを提案する。
GradformerはグラフニューラルネットワークやGTベースラインモデルよりも、さまざまなグラフ分類や回帰タスクにおいて一貫して優れています。
論文 参考訳(メタデータ) (2024-04-24T08:37:13Z) - Breaking the Entanglement of Homophily and Heterophily in
Semi-supervised Node Classification [25.831508778029097]
統計的観点から,ノードプロファイルとトポロジの関係を定量化するAMUDを提案する。
また、AMUDのための新しい有向グラフ学習パラダイムとしてADPAを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:54:11Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - Unifying over-smoothing and over-squashing in graph neural networks: A
physics informed approach and beyond [45.370565281567984]
グラフニューラルネットワーク(GNN)は、グラフ構造化データの機械学習における主要なアプローチの1つである。
過密化、過密化、限られた表現力といった重要な計算課題は、GNNの性能に影響を与え続けている。
本稿では,マルチスケールヒートカーネルベースGNN (MHKG) を導入し,多様なフィルタ関数がノード特性に与える影響について検討する。
論文 参考訳(メタデータ) (2023-09-06T06:22:18Z) - Addressing Heterophily in Node Classification with Graph Echo State
Networks [11.52174067809364]
ノード分類のためのグラフエコー状態ネットワーク(GESN)を用いた異種グラフの課題に対処する。
GESNはグラフのための貯水池計算モデルであり、ノードの埋め込みは訓練されていないメッセージパッシング関数によって計算される。
実験の結果, 貯水池モデルでは, ほぼ完全に訓練された深層モデルに対して, より優れた精度あるいは同等の精度が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-14T19:42:31Z) - A Non-Asymptotic Analysis of Oversmoothing in Graph Neural Networks [33.35609077417775]
非漸近解析により,この現象の背後にあるメカニズムを特徴づける。
混合効果がデノナイジング効果を支配し始めると,過スムージングが生じることを示す。
以上の結果から,PPRは深い層での過度なスムース化を緩和するが,PPRベースのアーキテクチャは依然として浅い深さで最高の性能を発揮することが示唆された。
論文 参考訳(メタデータ) (2022-12-21T00:33:59Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
最近の研究では、グラフニューラルネットワークは弱く、小さな摂動によって簡単に騙されることが示されている。
本研究では,グラフインジェクションアタック(Graph Injection Attack)という,新興だが重要な攻撃に焦点を当てる。
本稿では,グラフデータとモデルの協調的同好性増強によるGIAに対する汎用防衛フレームワークCHAGNNを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:44:31Z) - Bayesian Layer Graph Convolutioanl Network for Hyperspetral Image
Classification [24.91896527342631]
グラフ畳み込みネットワーク(GCN)ベースのモデルは、素晴らしいパフォーマンスを示している。
点推定に基づくディープラーニングフレームワークは、一般化が低く、分類結果の不確実性を定量化できない。
本稿では,点推定に基づくニューラルネットワークへの挿入層としてベイズ的アイデアを用いたベイズ的層を提案する。
HSIデータセットのサンプル不均衡問題を解決するためにGAN(Generative Adversarial Network)が構築されている。
論文 参考訳(メタデータ) (2022-11-14T12:56:56Z) - Deep Manifold Learning with Graph Mining [80.84145791017968]
グラフマイニングのための非段階的決定層を持つ新しいグラフ深層モデルを提案する。
提案モデルでは,現行モデルと比較して最先端性能を実現している。
論文 参考訳(メタデータ) (2022-07-18T04:34:08Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。