Qualitative Data Augmentation for Performance Prediction in VLSI
circuits
- URL: http://arxiv.org/abs/2302.07566v1
- Date: Wed, 15 Feb 2023 10:14:12 GMT
- Title: Qualitative Data Augmentation for Performance Prediction in VLSI
circuits
- Authors: Prasha Srivastava, Pawan Kumar, Zia Abbas
- Abstract summary: This work proposes generating and evaluating artificial data using generative adversarial networks (GANs) for circuit data.
The training data is obtained by various simulations in the Cadence Virtuoso, HSPICE, and Microcap design environment with TSMC 180nm and 22nm CMOS technology nodes.
The experimental results show that the proposed artificial data generation significantly improves ML models and reduces the percentage error by more than 50% of the original percentage error.
- Score: 2.1227526213206542
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Various studies have shown the advantages of using Machine Learning (ML)
techniques for analog and digital IC design automation and optimization. Data
scarcity is still an issue for electronic designs, while training highly
accurate ML models. This work proposes generating and evaluating artificial
data using generative adversarial networks (GANs) for circuit data to aid and
improve the accuracy of ML models trained with a small training data set. The
training data is obtained by various simulations in the Cadence Virtuoso,
HSPICE, and Microcap design environment with TSMC 180nm and 22nm CMOS
technology nodes. The artificial data is generated and tested for an
appropriate set of analog and digital circuits. The experimental results show
that the proposed artificial data generation significantly improves ML models
and reduces the percentage error by more than 50\% of the original percentage
error, which were previously trained with insufficient data. Furthermore, this
research aims to contribute to the extensive application of AI/ML in the field
of VLSI design and technology by relieving the training data
availability-related challenges.
Related papers
- An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
Deep generative learning uses certain ML models to learn the underlying distribution of existing data and generate synthetic samples that resemble the real data.
In this study, our objective is to evaluate the effectiveness of data augmentation using variational autoencoder (VAE)-based deep generative models.
We investigated whether the data augmentation leads to improved accuracy in the predictions of a deep neural network (DNN) model trained using the augmented data.
arXiv Detail & Related papers (2024-10-24T18:15:48Z) - When More Data Hurts: Optimizing Data Coverage While Mitigating Diversity Induced Underfitting in an Ultra-Fast Machine-Learned Potential [0.0]
This study investigates how training data diversity affects the performance of machine-learned interatomic potentials (MLIPs)
We employ expert and autonomously generated data to create the training data and fit four force-field variants to subsets of the data.
Our findings reveal a critical balance in training data diversity: insufficient diversity hinders generalization, while excessive diversity can exceed the MLIP's learning capacity.
arXiv Detail & Related papers (2024-09-11T20:45:44Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Simulation-Enhanced Data Augmentation for Machine Learning Pathloss
Prediction [9.664420734674088]
This paper introduces a novel simulation-enhanced data augmentation method for machine learning pathloss prediction.
Our method integrates synthetic data generated from a cellular coverage simulator and independently collected real-world datasets.
The integration of synthetic data significantly improves the generalizability of the model in different environments.
arXiv Detail & Related papers (2024-02-03T00:38:08Z) - Enhancing ML model accuracy for Digital VLSI circuits using diffusion
models: A study on synthetic data generation [0.5363664265121232]
This study investigates the use of diffusion models in generating artificial data for electronic circuits.
We utilize simulations in the HSPICE design environment with 22nm CMOS technology nodes to obtain representative real training data for our proposed diffusion model.
arXiv Detail & Related papers (2023-10-15T14:20:09Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
We investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method.
We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images.
arXiv Detail & Related papers (2023-05-10T11:10:09Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Effect of Balancing Data Using Synthetic Data on the Performance of
Machine Learning Classifiers for Intrusion Detection in Computer Networks [3.233545237942899]
Researchers in academia and industry used machine learning (ML) techniques to design and implement Intrusion Detection Systems (IDSes) for computer networks.
In many of the datasets used in such systems, data are imbalanced (i.e., not all classes have equal amount of samples)
We show that training ML models on dataset balanced with synthetic samples generated by CTGAN increased prediction accuracy by up to $8%$.
arXiv Detail & Related papers (2022-04-01T00:25:11Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
The continuous expanded scale of the industrial Internet of Things (IIoT) leads to IIoT equipments generating massive amounts of user data every moment.
How to manage these time series data in an efficient and safe way in the field of IIoT is still an open issue.
This paper studies the FL technology applications to manage IIoT equipment data in wireless network environments.
arXiv Detail & Related papers (2022-02-03T07:12:36Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.