論文の概要: Predictive Uncertainty Quantification for Bird's Eye View Segmentation: A Benchmark and Novel Loss Function
- arxiv url: http://arxiv.org/abs/2405.20986v2
- Date: Sun, 02 Mar 2025 07:46:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-04 16:11:20.445424
- Title: Predictive Uncertainty Quantification for Bird's Eye View Segmentation: A Benchmark and Novel Loss Function
- Title(参考訳): 鳥の視線分割のための予測的不確かさの定量化:ベンチマークと新しい損失関数
- Authors: Linlin Yu, Bowen Yang, Tianhao Wang, Kangshuo Li, Feng Chen,
- Abstract要約: 本稿では,Bird's Eye View (BEV)セグメンテーションにおける予測不確実性定量化のためのベンチマークを提案する。
本研究は,非分類および非分布画素の検出における定量化不確実性の有効性に焦点をあてる。
本研究では,不均衡なデータに特化して設計された新しい損失関数Uncertainty-Focal-Cross-Entropy (UFCE)を提案する。
- 参考スコア(独自算出の注目度): 10.193504550494486
- License:
- Abstract: The fusion of raw sensor data to create a Bird's Eye View (BEV) representation is critical for autonomous vehicle planning and control. Despite the growing interest in using deep learning models for BEV semantic segmentation, anticipating segmentation errors and enhancing the explainability of these models remain underexplored. This paper introduces a comprehensive benchmark for predictive uncertainty quantification in BEV segmentation, evaluating multiple uncertainty quantification methods across three popular datasets with three representative network architectures. Our study focuses on the effectiveness of quantified uncertainty in detecting misclassified and out-of-distribution (OOD) pixels while also improving model calibration. Through empirical analysis, we uncover challenges in existing uncertainty quantification methods and demonstrate the potential of evidential deep learning techniques, which capture both aleatoric and epistemic uncertainty. To address these challenges, we propose a novel loss function, Uncertainty-Focal-Cross-Entropy (UFCE), specifically designed for highly imbalanced data, along with a simple uncertainty-scaling regularization term that improves both uncertainty quantification and model calibration for BEV segmentation.
- Abstract(参考訳): 生のセンサーデータを融合してバードアイビュー(Bird's Eye View, BEV)表現を生成することは、自動運転車の計画と制御にとって重要である。
BEVセマンティックセグメンテーションにディープラーニングモデルを使うことへの関心が高まっているにもかかわらず、セグメンテーションエラーを予測し、これらのモデルの説明可能性を高めることは、まだ未解決のままである。
本稿では、BEVセグメンテーションにおける予測不確実性定量化のための総合的なベンチマークを提案し、3つの代表的ネットワークアーキテクチャを持つ3つの一般的なデータセットにおける複数の不確実性定量化手法を評価する。
本研究は,モデルキャリブレーションの改善とともに,誤分類および非分布(OOD)画素の検出における定量化不確実性の有効性に焦点をあてる。
経験的分析により、既存の不確実性定量化手法の課題を明らかにし、アレタリックおよびてんかんの両不確実性を捉える明らかな深層学習技術の可能性を実証する。
これらの課題に対処するため、高不均衡なデータに特化して設計された新しい損失関数Uncertainty-Focal-Cross-Entropy (UFCE) と、BEVセグメンテーションのための不確実性定量化とモデルキャリブレーションの両方を改善する単純な不確実性スケーリング正規化項を提案する。
関連論文リスト
- A Black-Box Evaluation Framework for Semantic Robustness in Bird's Eye View Detection [24.737984789074094]
我々は,BEVモデルを騙すために3つの一般的な意味摂動を逆向きに最適化するロバストネス評価フレームワークを開発する。
セマンティック摂動を最適化することで生じる課題に対処するため、mAPメトリックを置き換えるスムーズな距離に基づく代理関数を設計する。
最近の10種類のBEVモデルのセマンティックロバスト性に関するベンチマークを提供する。
論文 参考訳(メタデータ) (2024-12-18T14:53:38Z) - Uncertainty separation via ensemble quantile regression [23.667247644930708]
本稿では,不確実性推定と分離のための新しい,スケーラブルなフレームワークを提案する。
我々のフレームワークは大規模データセットにスケーラブルであり、合成ベンチマークで優れた性能を示す。
論文 参考訳(メタデータ) (2024-12-18T11:15:32Z) - Label-Confidence-Aware Uncertainty Estimation in Natural Language Generation [8.635811152610604]
不確実性定量化(UQ)は、AIシステムの安全性と堅牢性を保証するために不可欠である。
サンプルとラベルソース間の分岐に基づくラベル信頼度(LCA)の不確実性評価を提案する。
論文 参考訳(メタデータ) (2024-12-10T07:35:23Z) - Post-hoc Probabilistic Vision-Language Models [51.12284891724463]
視覚言語モデル(VLM)は、分類、検索、生成タスクにおいて顕著な成功を収めている。
追加トレーニングを必要としないVLMにおけるポストホック不確実性評価を提案する。
この結果から,大規模モデルの安全性クリティカルな応用が期待できることがわかった。
論文 参考訳(メタデータ) (2024-12-08T18:16:13Z) - Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving [55.93813178692077]
本稿では,BEVアルゴリズムのレジリエンスを評価するためのベンチマークスイートであるRoboBEVを紹介する。
検出,マップセグメンテーション,深さ推定,占有予測といったタスクにまたがる33の最先端のBEVベースの知覚モデルを評価する。
また, 事前学習や深度自由なBEVトランスフォーメーションなどの戦略が, アウト・オブ・ディストリビューションデータに対するロバスト性を高める上で有効であることを示す。
論文 参考訳(メタデータ) (2024-05-27T17:59:39Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
論文 参考訳(メタデータ) (2023-06-16T16:30:39Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
データ駆動型ビジュアルオドメトリー(VO)は、自律エッジロボティクスにとって重要なサブルーチンである。
昆虫スケールドローンや外科ロボットのような最先端ロボットデバイスは、VOの予測の不確実性を推定する計算的に効率的な枠組みを欠いている。
本稿では,共形推論(CI)を利用してVOの不確実な帯域を抽出する,新しい,軽量で統計的に堅牢なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-03T20:37:55Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Uncertainty-aware Panoptic Segmentation [21.89063036529791]
本稿では,不確実性を考慮したパノプティックセグメンテーションの課題を紹介する。
ピクセルごとのセマンティクスとインスタンスのセグメンテーションを予測し、画素ごとの不確実性を推定する。
本稿では,この課題を解決するために,トップダウンのエビデンシャル・パノプティクス・ネットワーク(EvPSNet)を提案する。
論文 参考訳(メタデータ) (2022-06-29T12:07:21Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。