論文の概要: Differentiable Analog Quantum Computing for Optimization and Control
- arxiv url: http://arxiv.org/abs/2210.15812v1
- Date: Fri, 28 Oct 2022 00:28:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 17:28:02.499157
- Title: Differentiable Analog Quantum Computing for Optimization and Control
- Title(参考訳): 最適化と制御のための微分可能アナログ量子コンピューティング
- Authors: Jiaqi Leng, Yuxiang Peng, Yi-Ling Qiao, Ming Lin, Xiaodi Wu
- Abstract要約: 我々は、アナログ信号(パルス)レベルで特定のパラメータ化設計により、最初の微分可能なアナログ量子コンピューティングフレームワークを定式化する。
我々は,モンテカルロサンプリングを用いた前方通過法を用いて量子力学の勾配を推定するスケーラブルな手法を提案する。
- 参考スコア(独自算出の注目度): 14.736412617211538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We formulate the first differentiable analog quantum computing framework with
a specific parameterization design at the analog signal (pulse) level to better
exploit near-term quantum devices via variational methods. We further propose a
scalable approach to estimate the gradients of quantum dynamics using a forward
pass with Monte Carlo sampling, which leads to a quantum stochastic gradient
descent algorithm for scalable gradient-based training in our framework.
Applying our framework to quantum optimization and control, we observe a
significant advantage of differentiable analog quantum computing against SOTAs
based on parameterized digital quantum circuits by orders of magnitude.
- Abstract(参考訳): 我々は,アナログ信号(パルス)レベルでの特定のパラメータ化設計を施した最初の微分可能アナログ量子コンピューティングフレームワークを定式化し,近距離量子デバイスを変分法でより有効活用する。
さらに,モンテカルロサンプリングを用いた前方通過法を用いて量子力学の勾配を推定するスケーラブルな手法を提案する。
量子最適化と制御の枠組みを応用し,パラメータ化されたディジタル量子回路に基づくsomaに対する微分可能アナログ量子コンピューティングの大きな利点を1桁も観察した。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Pulse-based variational quantum optimization and metalearning in superconducting circuits [3.770494165043573]
ハードウェアレベルフレームワークとしてパルスベースの変動量子最適化(PBVQO)を導入する。
量子干渉デバイス上での外部超伝導の最適化について説明する。
PBVQOとメタラーニングの相乗効果は、従来のゲートベースの変分アルゴリズムよりも有利である。
論文 参考訳(メタデータ) (2024-07-17T15:05:36Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - Unveiling quantum phase transitions from traps in variational quantum algorithms [0.0]
量子最適化と古典的機械学習を組み合わせたハイブリッドアルゴリズムを提案する。
従来の位相遷移の同定にはLASSO、トポロジカル遷移にはTransformerモデルを用いる。
我々のプロトコルは効率と精度を大幅に向上させ、量子コンピューティングと機械学習の統合における新たな道を開く。
論文 参考訳(メタデータ) (2024-05-14T09:01:41Z) - Enhancing Quantum Annealing in Digital-Analog Quantum Computing [0.0]
デジタルアナログ量子コンピューティング(DAQC)は、実用的な量子コンピュータを構築する際の課題に対処するための有望なアプローチを提供する。
本稿では,量子アニールの性能向上を目的としたアルゴリズムを提案する。
本研究では、量子回路を用いた量子データ処理が、量子情報を捨てる古典的なデータ処理より優れていることを示す。
論文 参考訳(メタデータ) (2023-06-03T09:16:15Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
大規模部分量子コヒーレント系の基本パラメータの無次元結合について論じる。
解析的および数値計算に基づいて、断熱進化中の量子ビット系に対して、そのような数を提案する。
論文 参考訳(メタデータ) (2021-08-30T23:50:05Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
本研究では,量子計測から直接最適化される関数の勾配を推定する問題について検討する。
マルチキュービットパラメトリック量子進化の勾配を推定するアルゴリズムを提供する数学的に正確な公式を導出する。
私たちのアルゴリズムは、利用可能な全ての量子ゲートがノイズである場合でも、いくつかの近似で機能し続けています。
論文 参考訳(メタデータ) (2020-05-20T18:24:11Z) - Approximating the quantum approximate optimization algorithm with
digital-analog interactions [0.0]
ディジタルアナログパラダイムは変分量子近似最適化アルゴリズムに適していることを示す。
我々は,変分アルゴリズムが非変分アルゴリズムよりも有意な改善をもたらす,単一キュービット演算速度のレギュレーションを観察する。
論文 参考訳(メタデータ) (2020-02-27T16:01:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。