Object Segmentation of Cluttered Airborne LiDAR Point Clouds
- URL: http://arxiv.org/abs/2210.16081v1
- Date: Fri, 28 Oct 2022 11:58:22 GMT
- Title: Object Segmentation of Cluttered Airborne LiDAR Point Clouds
- Authors: Mariona Caros, Ariadna Just, Santi Segui, Jordi Vitria
- Abstract summary: We propose an end-to-end deep learning framework to automatize the detection and segmentation of objects defined by an arbitrary number of LiDAR points surrounded by clutter.
Our method is based on a light version of PointNet that achieves good performance on both object recognition and segmentation tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Airborne topographic LiDAR is an active remote sensing technology that emits
near-infrared light to map objects on the Earth's surface. Derived products of
LiDAR are suitable to service a wide range of applications because of their
rich three-dimensional spatial information and their capacity to obtain
multiple returns. However, processing point cloud data still requires a
significant effort in manual editing. Certain human-made objects are difficult
to detect because of their variety of shapes, irregularly-distributed point
clouds, and low number of class samples. In this work, we propose an end-to-end
deep learning framework to automatize the detection and segmentation of objects
defined by an arbitrary number of LiDAR points surrounded by clutter. Our
method is based on a light version of PointNet that achieves good performance
on both object recognition and segmentation tasks. The results are tested
against manually delineated power transmission towers and show promising
accuracy.
Related papers
- STONE: A Submodular Optimization Framework for Active 3D Object Detection [20.54906045954377]
Key requirement for training an accurate 3D object detector is the availability of a large amount of LiDAR-based point cloud data.
This paper proposes a unified active 3D object detection framework, for greatly reducing the labeling cost of training 3D object detectors.
arXiv Detail & Related papers (2024-10-04T20:45:33Z) - Sparse-to-Dense LiDAR Point Generation by LiDAR-Camera Fusion for 3D Object Detection [9.076003184833557]
We propose the LiDAR-Camera Augmentation Network (LCANet), a novel framework that reconstructs LiDAR point cloud data by fusing 2D image features.
LCANet fuses data from LiDAR sensors by projecting image features into the 3D space, integrating semantic information into the point cloud data.
This fusion effectively compensates for LiDAR's weakness in detecting objects at long distances, which are often represented by sparse points.
arXiv Detail & Related papers (2024-09-23T13:03:31Z) - Vision-Language Guidance for LiDAR-based Unsupervised 3D Object Detection [16.09503890891102]
We propose an unsupervised 3D detection approach that operates exclusively on LiDAR point clouds.
We exploit the inherent CLI-temporal knowledge of LiDAR point clouds for clustering, tracking, as well as boxtext and label refinement.
Our approach outperforms state-of-the-art unsupervised 3D object detectors on the Open dataset.
arXiv Detail & Related papers (2024-08-07T14:14:53Z) - Once Detected, Never Lost: Surpassing Human Performance in Offline LiDAR
based 3D Object Detection [50.959453059206446]
This paper aims for high-performance offline LiDAR-based 3D object detection.
We first observe that experienced human annotators annotate objects from a track-centric perspective.
We propose a high-performance offline detector in a track-centric perspective instead of the conventional object-centric perspective.
arXiv Detail & Related papers (2023-04-24T17:59:05Z) - Learning Object-level Point Augmentor for Semi-supervised 3D Object
Detection [85.170578641966]
We propose an object-level point augmentor (OPA) that performs local transformations for semi-supervised 3D object detection.
In this way, the resultant augmentor is derived to emphasize object instances rather than irrelevant backgrounds.
Experiments on the ScanNet and SUN RGB-D datasets show that the proposed OPA performs favorably against the state-of-the-art methods.
arXiv Detail & Related papers (2022-12-19T06:56:14Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
We propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds.
We propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays.
Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains.
arXiv Detail & Related papers (2022-04-05T14:42:57Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
A point cloud is a dense compilation of spatial data in 3D coordinates.
We propose a PointNet-based approach for 3D Multi-Object Tracking (MOT)
arXiv Detail & Related papers (2021-06-03T05:36:39Z) - SIENet: Spatial Information Enhancement Network for 3D Object Detection
from Point Cloud [20.84329063509459]
LiDAR-based 3D object detection pushes forward an immense influence on autonomous vehicles.
Due to the limitation of the intrinsic properties of LiDAR, fewer points are collected at the objects farther away from the sensor.
To address the challenge, we propose a novel two-stage 3D object detection framework, named SIENet.
arXiv Detail & Related papers (2021-03-29T07:45:09Z) - EDN: Salient Object Detection via Extremely-Downsampled Network [66.38046176176017]
We introduce an Extremely-Downsampled Network (EDN), which employs an extreme downsampling technique to effectively learn a global view of the whole image.
Experiments demonstrate that EDN achieves sArt performance with real-time speed.
arXiv Detail & Related papers (2020-12-24T04:23:48Z) - 3D Object Detection From LiDAR Data Using Distance Dependent Feature
Extraction [7.04185696830272]
This work proposes an improvement for 3D object detectors by taking into account the properties of LiDAR point clouds over distance.
Results show that training separate networks for close-range and long-range objects boosts performance for all KITTI benchmark difficulties.
arXiv Detail & Related papers (2020-03-02T13:16:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.