論文の概要: Gated Graph Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2002.01038v2
- Date: Wed, 5 Aug 2020 18:48:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 09:34:19.576370
- Title: Gated Graph Recurrent Neural Networks
- Title(参考訳): Gated Graph Recurrent Neural Networks
- Authors: Luana Ruiz, Fernando Gama, Alejandro Ribeiro
- Abstract要約: グラフ処理の一般的な学習フレームワークとしてグラフリカレントニューラルネットワーク(GRNN)を導入する。
勾配の消失問題に対処するため,時間,ノード,エッジゲートの3つの異なるゲーティング機構でGRNNを前進させた。
数値的な結果は、GRNNがGNNやRNNよりも優れており、グラフプロセスの時間構造とグラフ構造の両方を考慮することが重要であることを示している。
- 参考スコア(独自算出の注目度): 176.3960927323358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph processes exhibit a temporal structure determined by the sequence index
and and a spatial structure determined by the graph support. To learn from
graph processes, an information processing architecture must then be able to
exploit both underlying structures. We introduce Graph Recurrent Neural
Networks (GRNNs) as a general learning framework that achieves this goal by
leveraging the notion of a recurrent hidden state together with graph signal
processing (GSP). In the GRNN, the number of learnable parameters is
independent of the length of the sequence and of the size of the graph,
guaranteeing scalability. We prove that GRNNs are permutation equivariant and
that they are stable to perturbations of the underlying graph support. To
address the problem of vanishing gradients, we also put forward gated GRNNs
with three different gating mechanisms: time, node and edge gates. In numerical
experiments involving both synthetic and real datasets, time-gated GRNNs are
shown to improve upon GRNNs in problems with long term dependencies, while node
and edge gates help encode long range dependencies present in the graph. The
numerical results also show that GRNNs outperform GNNs and RNNs, highlighting
the importance of taking both the temporal and graph structures of a graph
process into account.
- Abstract(参考訳): グラフプロセスは、シーケンスインデックスによって決定される時間構造と、グラフサポートによって決定される空間構造を示す。
グラフプロセスから学ぶためには、情報処理アーキテクチャが両方の基盤構造を活用できなければならない。
グラフ信号処理(GSP)とともに、再帰的隠れ状態の概念を活用することで、この目標を達成するための一般的な学習フレームワークとしてグラフリカレントニューラルネットワーク(GRNN)を導入する。
grnnでは、学習可能なパラメータの数はシーケンスの長さとグラフのサイズに依存しており、スケーラビリティを保証している。
GRNNは置換同変であり、基礎となるグラフ支持の摂動に対して安定であることを示す。
勾配の消失問題に対処するため,時間,ノード,エッジゲートの3つの異なるゲーティング機構を備えたゲート型GRNNも提案した。
合成データセットと実データセットの両方を含む数値実験では、時間付きGRNNは長期依存の問題においてGRNNよりも改善され、ノードゲートとエッジゲートはグラフに存在する長距離依存をエンコードする。
数値的な結果は、GRNNがGNNやRNNよりも優れており、グラフプロセスの時間構造とグラフ構造の両方を考慮することが重要であることを示している。
関連論文リスト
- Transferability of Graph Neural Networks using Graphon and Sampling Theories [0.0]
グラフニューラルネットワーク(GNN)は、さまざまなドメインでグラフベースの情報を処理するための強力なツールとなっている。
GNNの望ましい特性は転送可能性であり、トレーニングされたネットワークは、その正確性を再トレーニングすることなく、異なるグラフから情報を交換することができる。
我々は,2層グラファイトニューラルネットワーク(WNN)アーキテクチャを明示することにより,GNNへのグラファイトの適用に寄与する。
論文 参考訳(メタデータ) (2023-07-25T02:11:41Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Search to Capture Long-range Dependency with Stacking GNNs for Graph
Classification [41.84399177525008]
浅いGNNは、より深いGNNに直面しているよく知られたオーバースムースな問題のため、より一般的である。
LRGNN(Long-Range Graph Neural Networks)と呼ばれるニューラルアーキテクチャサーチ(NAS)による新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-02-17T03:40:17Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - Geodesic Graph Neural Network for Efficient Graph Representation
Learning [34.047527874184134]
我々はGeodesic GNN(GDGNN)と呼ばれる効率的なGNNフレームワークを提案する。
ラベル付けなしでノード間の条件付き関係をモデルに注入する。
ジオデシック表現を前提としたGDGNNは、通常のGNNよりもはるかにリッチな構造情報を持つノード、リンク、グラフ表現を生成することができる。
論文 参考訳(メタデータ) (2022-10-06T02:02:35Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
本稿では,CGPと呼ばれるグラフの段階的プルーニングフレームワークを動的にGNNに提案する。
LTHに基づく手法とは異なり、提案手法では再学習を必要とせず、計算コストを大幅に削減する。
提案手法は,既存の手法の精度を一致させたり,あるいは超えたりしながら,トレーニングと推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2022-07-18T14:23:31Z) - Hierarchical graph neural nets can capture long-range interactions [8.067880298298185]
与えられたグラフの多重解像度表現を利用する階層的メッセージパッシングモデルについて検討する。
これにより、ローカル情報を失うことなく、大きな受容領域にまたがる特徴の学習が容易になる。
階層グラフネット(HGNet)を導入し、任意の2つの接続ノードに対して、最大対数長のメッセージパスパスが存在することを保証します。
論文 参考訳(メタデータ) (2021-07-15T16:24:22Z) - Implicit Graph Neural Networks [46.0589136729616]
Indicit Graph Neural Networks (IGNN) と呼ばれるグラフ学習フレームワークを提案する。
IGNNは一貫して長距離依存を捉え、最先端のGNNモデルより優れている。
論文 参考訳(メタデータ) (2020-09-14T06:04:55Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
既存のGNNモデルの多くは浅く、本質的に機能中心である。
我々は,既存の浅いGNNがグラフ構造をよく保存できないことを経験的かつ解析的に示す。
本稿では,グラフ構造保存におけるGNNの能力を高めるプラグインモジュールであるEigen-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-08T02:47:38Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。