論文の概要: Calibrating Deep Neural Network using Euclidean Distance
- arxiv url: http://arxiv.org/abs/2410.18321v1
- Date: Wed, 23 Oct 2024 23:06:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:51:48.038605
- Title: Calibrating Deep Neural Network using Euclidean Distance
- Title(参考訳): ユークリッド距離を用いたディープニューラルネットワークの校正
- Authors: Wenhao Liang, Chang Dong, Liangwei Zheng, Zhengyang Li, Wei Zhang, Weitong Chen,
- Abstract要約: 機械学習では、Focal Lossは、サンプルの分類が難しいことを強調することで、誤分類率を減らすために一般的に使用される。
高校正誤差は予測確率と実際の結果との相違を示し、モデルの信頼性に影響を及ぼす。
本研究では,FCL (Focal Loss) と呼ばれる新しい損失関数を導入する。
- 参考スコア(独自算出の注目度): 5.675312975435121
- License:
- Abstract: Uncertainty is a fundamental aspect of real-world scenarios, where perfect information is rarely available. Humans naturally develop complex internal models to navigate incomplete data and effectively respond to unforeseen or partially observed events. In machine learning, Focal Loss is commonly used to reduce misclassification rates by emphasizing hard-to-classify samples. However, it does not guarantee well-calibrated predicted probabilities and may result in models that are overconfident or underconfident. High calibration error indicates a misalignment between predicted probabilities and actual outcomes, affecting model reliability. This research introduces a novel loss function called Focal Calibration Loss (FCL), designed to improve probability calibration while retaining the advantages of Focal Loss in handling difficult samples. By minimizing the Euclidean norm through a strictly proper loss, FCL penalizes the instance-wise calibration error and constrains bounds. We provide theoretical validation for proposed method and apply it to calibrate CheXNet for potential deployment in web-based health-care systems. Extensive evaluations on various models and datasets demonstrate that our method achieves SOTA performance in both calibration and accuracy metrics.
- Abstract(参考訳): 不確実性は、完璧な情報がほとんど得られない現実世界のシナリオの基本的な側面である。
人間は自然に複雑な内部モデルを開発し、不完全なデータをナビゲートし、予期せぬ出来事や部分的に観察された出来事に効果的に反応する。
機械学習では、Focal Lossは、サンプルの分類が難しいことを強調することで、誤分類率を減らすために一般的に使用される。
しかし、これはよく校正された予測確率を保証せず、過信または過信のモデルをもたらす可能性がある。
高校正誤差は予測確率と実際の結果との相違を示し、モデルの信頼性に影響を及ぼす。
本研究では,FCL (Focal Calibration Loss) と呼ばれる新しい損失関数を導入する。
ユークリッドノルムを厳密に適切な損失で最小化することにより、FCLはインスタンスワイドの校正誤差と制約境界をペナルティ化する。
提案手法の理論的検証を行い,CheXNetを校正し,Web ベースの医療システムへの展開の可能性を検証した。
各種モデルおよびデータセットの大規模評価により, キャリブレーションと精度の両面でSOTA性能が得られた。
関連論文リスト
- Feature Clipping for Uncertainty Calibration [24.465567005078135]
現代のディープニューラルネットワーク(DNN)は、しばしば過剰な自信に悩まされ、誤校正につながる。
この問題に対処するために,特徴クリッピング(FC)と呼ばれるポストホックキャリブレーション手法を提案する。
FCは特定の閾値に特徴値をクリップし、高い校正誤差サンプルのエントロピーを効果的に増加させる。
論文 参考訳(メタデータ) (2024-10-16T06:44:35Z) - Decoupling of neural network calibration measures [45.70855737027571]
本稿では,AUSE(Area Under Sparsification Error curve)測定値に焦点をあてて,異なるニューラルネットワークキャリブレーション尺度の結合について検討する。
本稿では,現行の手法は自由度を保ち,安全クリティカルな機能のホモログ化のユニークなモデルを妨げると結論付けている。
論文 参考訳(メタデータ) (2024-06-04T15:21:37Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
本稿では,境界ボックスのクラス信頼度を予測精度に合わせることを目的とした,新たな補助損失定式化を提案する。
その結果,列車の走行時間損失はキャリブレーション基準を超過し,キャリブレーション誤差を低減させることがわかった。
論文 参考訳(メタデータ) (2023-03-25T08:56:21Z) - Beyond calibration: estimating the grouping loss of modern neural
networks [68.8204255655161]
適切なスコアリングルール理論は、キャリブレーション損失が与えられた場合、個々のエラーを特徴づける欠片がグループ化損失であることを示している。
視覚およびNLPにおける現代のニューラルネットワークアーキテクチャは、特に分散シフト設定においてグループ化損失を示す。
論文 参考訳(メタデータ) (2022-10-28T07:04:20Z) - Theoretical characterization of uncertainty in high-dimensional linear
classification [24.073221004661427]
本研究では,高次元入力データとラベルの限られたサンプル数から学習する不確実性が,近似メッセージパッシングアルゴリズムによって得られることを示す。
我々は,信頼度を適切に正則化することで緩和する方法について論じるとともに,損失に対するクロスバリデーションが0/1誤差よりもキャリブレーションが優れていることを示す。
論文 参考訳(メタデータ) (2022-02-07T15:32:07Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
ミススキャリブレーション(Miscalibration)は、モデルの信頼性と正しさのミスマッチである。
焦点損失は、既に十分に校正されたモデルを学ぶことができることを示す。
ほぼすべてのケースにおいて精度を損なうことなく,最先端のキャリブレーションを達成できることを示す。
論文 参考訳(メタデータ) (2020-02-21T17:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。