論文の概要: GPA-Net:No-Reference Point Cloud Quality Assessment with Multi-task
Graph Convolutional Network
- arxiv url: http://arxiv.org/abs/2210.16478v1
- Date: Sat, 29 Oct 2022 03:06:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-01 18:46:47.982974
- Title: GPA-Net:No-Reference Point Cloud Quality Assessment with Multi-task
Graph Convolutional Network
- Title(参考訳): GPA-Net:マルチタスクグラフ畳み込みネットワークによる非参照点クラウド品質評価
- Authors: Ziyu Shan, Qi Yang, Rui Ye, Yujie Zhang, Yiling Xu, Xiaozhong Xu and
Shan Liu
- Abstract要約: グラフ畳み込みPCQAネットワーク(GPA-Net)と呼ばれる新しい非参照PCQAメトリックを提案する。
PCQAに有効な特徴を抽出するために,構造とテクスチャの摂動を注意深く捉えた新しいグラフ畳み込みカーネル,すなわちGPAConvを提案する。
2つの独立したデータベースの実験結果から、GPA-Netは最先端の非参照PCQAメトリクスと比較して最高のパフォーマンスを達成していることが示された。
- 参考スコア(独自算出の注目度): 35.381247959766505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of 3D vision, point cloud has become an
increasingly popular 3D visual media content. Due to the irregular structure,
point cloud has posed novel challenges to the related research, such as
compression, transmission, rendering and quality assessment. In these latest
researches, point cloud quality assessment (PCQA) has attracted wide attention
due to its significant role in guiding practical applications, especially in
many cases where the reference point cloud is unavailable. However, current
no-reference metrics which based on prevalent deep neural network have apparent
disadvantages. For example, to adapt to the irregular structure of point cloud,
they require preprocessing such as voxelization and projection that introduce
extra distortions, and the applied grid-kernel networks, such as Convolutional
Neural Networks, fail to extract effective distortion-related features.
Besides, they rarely consider the various distortion patterns and the
philosophy that PCQA should exhibit shifting, scaling, and rotational
invariance. In this paper, we propose a novel no-reference PCQA metric named
the Graph convolutional PCQA network (GPA-Net). To extract effective features
for PCQA, we propose a new graph convolution kernel, i.e., GPAConv, which
attentively captures the perturbation of structure and texture. Then, we
propose the multi-task framework consisting of one main task (quality
regression) and two auxiliary tasks (distortion type and degree predictions).
Finally, we propose a coordinate normalization module to stabilize the results
of GPAConv under shift, scale and rotation transformations. Experimental
results on two independent databases show that GPA-Net achieves the best
performance compared to the state-of-the-art no-reference PCQA metrics, even
better than some full-reference metrics in some cases.
- Abstract(参考訳): 3Dビジョンの急速な発展に伴い、ポイントクラウドはますます人気のある3Dビジュアルメディアコンテンツになりつつある。
不規則な構造のため、ポイントクラウドは、圧縮、伝達、レンダリング、品質評価など、関連する研究に新たな課題をもたらした。
これらの最新の研究で、ポイントクラウドの品質評価(PCQA)は、特に参照ポイントクラウドが利用できない場合において、実用的なアプリケーションを導く上で重要な役割を担っているため、広く注目を集めている。
しかし、一般的なディープニューラルネットワークに基づく現在の非参照メトリクスには明らかな欠点がある。
例えば、点雲の不規則構造に適応するためには、余分な歪みをもたらすボキセル化やプロジェクションのような前処理が必要であり、Convolutional Neural Networksのような応用グリッドカーネルネットワークは、効果的な歪み関連の特徴を抽出できない。
さらに、彼らは様々な歪みパターンや、PCQAがシフト、スケーリング、回転不変性を示すべきという哲学を考えることはめったにない。
本稿では,グラフ畳み込みPCQAネットワーク (GPA-Net) と呼ばれる新しい非参照PCQAメトリックを提案する。
PCQAに有効な特徴を抽出するために,構造とテクスチャの摂動を注意深く捉えた新しいグラフ畳み込みカーネル,すなわちGPAConvを提案する。
次に,1つのメインタスク(品質回帰)と2つの補助タスク(歪タイプと次数予測)からなるマルチタスクフレームワークを提案する。
最後に,GPAConvの結果をシフト,スケール,回転変換で安定化させる座標正規化モジュールを提案する。
2つの独立したデータベースの実験結果から、GPA-Netは最先端の非参照PCQAメトリクスと比較して最高のパフォーマンスを達成している。
関連論文リスト
- No-Reference Point Cloud Quality Assessment via Graph Convolutional Network [89.12589881881082]
3次元(3D)ポイントクラウドは、新しいビジュアルメディアフォーマットとして、消費者にますます好まれている。
ポイントクラウドは、必然的に、マルチメディア通信システムによる品質劣化と情報損失に悩まされる。
マルチビュー2次元投影画像の相互依存関係を特徴付けるために,GCN(Graph Convolutional Network)を用いた新しい非参照PCQA手法を提案する。
論文 参考訳(メタデータ) (2024-11-12T11:39:05Z) - PointRWKV: Efficient RWKV-Like Model for Hierarchical Point Cloud Learning [56.14518823931901]
NLP分野におけるRWKVモデルから導かれる線形複雑性のモデルであるPointRWKVを提案する。
まず,改良型マルチヘッド行列値状態を用いて,PointRWKVブロック内のグローバル処理機能について検討する。
局所的な幾何学的特徴を同時に抽出するために,グラフ安定化器を用いた固定半径近傍グラフにおいて,点雲を効率的に符号化する並列分岐を設計する。
論文 参考訳(メタデータ) (2024-05-24T05:02:51Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-Reference Point Cloud Quality Assessment (NR-PCQA) は、歪んだ点雲の知覚的品質を、参照なしで自動的に評価することを目的としている。
我々は,PCQA(CoPA)に適した新しいコントラスト付き事前学習フレームワークを提案する。
提案手法は,最新のPCQA手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2024-03-15T07:16:07Z) - Activating Frequency and ViT for 3D Point Cloud Quality Assessment
without Reference [0.49157446832511503]
与えられた3D-PCの非参照品質指標を提案する。
入力属性を品質スコアにマップするには、Deformable Convolutional Network(DCN)とViT(ViT)を組み合わせた軽量ハイブリッドディープモデルを用いる。
その結果,本手法は現在のNR-PCQA測度やPointXRのFR-PCQAよりも優れていた。
論文 参考訳(メタデータ) (2023-12-10T19:13:34Z) - Simple Baselines for Projection-based Full-reference and No-reference
Point Cloud Quality Assessment [60.2709006613171]
投影型ポイントクラウド品質評価(PCQA)のための簡易ベースラインを提案する。
我々は、全参照(FR)タスクと非参照(NR)PCQAタスクの両方に対して、点雲から共通立方体状の投影プロセスによって得られる多重射影を用いる。
ICIP 2023 PCVQA Challengeに参加して,5トラック中4トラックで首位を獲得した。
論文 参考訳(メタデータ) (2023-10-26T04:42:57Z) - TCDM: Transformational Complexity Based Distortion Metric for Perceptual
Point Cloud Quality Assessment [24.936061591860838]
客観的クラウド品質評価(PCQA)研究の目標は、ポイントクラウド品質を一貫した方法で測定するメトリクスを開発することである。
歪んだ点雲を基準に戻す複雑さを計測することで点雲の質を評価する。
提案手法の有効性を,5つのパブリッククラウド品質評価データベース上で行った広範囲な実験を通じて評価した。
論文 参考訳(メタデータ) (2022-10-10T13:20:51Z) - MM-PCQA: Multi-Modal Learning for No-reference Point Cloud Quality
Assessment [32.495387943305204]
マルチモーダル方式で,新しい非参照点クラウド品質評価(NR-PCQA)指標を提案する。
具体的には、点雲を部分モデルに分割し、点シフトやダウンサンプリングのような局所的な幾何学的歪みを表す。
目標を達成するために、サブモデルと投影された画像は、ポイントベースおよびイメージベースニューラルネットワークで符号化される。
論文 参考訳(メタデータ) (2022-09-01T06:11:12Z) - No-Reference Point Cloud Quality Assessment via Domain Adaptation [31.280188860021248]
本稿では,3次元点雲に対する画像伝達点雲品質評価(IT-PCQA)の新たな非参照品質評価指標を提案する。
特に,自然画像をソース領域として,点雲を対象領域として扱うとともに,教師なしの敵領域適応により点雲の品質を推定する。
実験結果から,提案手法は従来のノン参照指標よりも高い性能が得られることが示された。
論文 参考訳(メタデータ) (2021-12-06T08:20:40Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
本稿では,高品質(本社)画像再構成のために,異なる状態の情報をどのように組み合わせるべきかを学習するディープインターリーブドネットワーク(DIN)を提案する。
本稿では,各インターリーブノードにアタッチメントされた非対称なコアテンション(AsyCA)を提案し,その特性依存性をモデル化する。
提案したDINはエンドツーエンドで訓練でき、様々な画像復元タスクに適用できる。
論文 参考訳(メタデータ) (2020-10-29T15:32:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。