論文の概要: No-Reference Point Cloud Quality Assessment via Graph Convolutional Network
- arxiv url: http://arxiv.org/abs/2411.07728v1
- Date: Tue, 12 Nov 2024 11:39:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:17:57.465728
- Title: No-Reference Point Cloud Quality Assessment via Graph Convolutional Network
- Title(参考訳): グラフ畳み込みネットワークによる非参照ポイントクラウド品質評価
- Authors: Wu Chen, Qiuping Jiang, Wei Zhou, Feng Shao, Guangtao Zhai, Weisi Lin,
- Abstract要約: 3次元(3D)ポイントクラウドは、新しいビジュアルメディアフォーマットとして、消費者にますます好まれている。
ポイントクラウドは、必然的に、マルチメディア通信システムによる品質劣化と情報損失に悩まされる。
マルチビュー2次元投影画像の相互依存関係を特徴付けるために,GCN(Graph Convolutional Network)を用いた新しい非参照PCQA手法を提案する。
- 参考スコア(独自算出の注目度): 89.12589881881082
- License:
- Abstract: Three-dimensional (3D) point cloud, as an emerging visual media format, is increasingly favored by consumers as it can provide more realistic visual information than two-dimensional (2D) data. Similar to 2D plane images and videos, point clouds inevitably suffer from quality degradation and information loss through multimedia communication systems. Therefore, automatic point cloud quality assessment (PCQA) is of critical importance. In this work, we propose a novel no-reference PCQA method by using a graph convolutional network (GCN) to characterize the mutual dependencies of multi-view 2D projected image contents. The proposed GCN-based PCQA (GC-PCQA) method contains three modules, i.e., multi-view projection, graph construction, and GCN-based quality prediction. First, multi-view projection is performed on the test point cloud to obtain a set of horizontally and vertically projected images. Then, a perception-consistent graph is constructed based on the spatial relations among different projected images. Finally, reasoning on the constructed graph is performed by GCN to characterize the mutual dependencies and interactions between different projected images, and aggregate feature information of multi-view projected images for final quality prediction. Experimental results on two publicly available benchmark databases show that our proposed GC-PCQA can achieve superior performance than state-of-the-art quality assessment metrics. The code will be available at: https://github.com/chenwuwq/GC-PCQA.
- Abstract(参考訳): 3次元(3D)ポイントクラウドは、新たなビジュアルメディアフォーマットとして、二次元(2D)データよりもリアルな視覚情報を提供できるため、消費者によってますます好まれている。
2D平面画像やビデオと同様に、ポイントクラウドは必然的に品質劣化とマルチメディア通信システムによる情報損失に悩まされる。
そのため、自動点雲品質評価(PCQA)が重要である。
本稿では,マルチビュー2次元投影画像の相互依存関係を特徴付けるグラフ畳み込みネットワーク(GCN)を用いた,新しい非参照PCQA手法を提案する。
提案したGCNベースのPCQA(GC-PCQA)法は,マルチビュープロジェクション,グラフ構築,GCNベースの品質予測という3つのモジュールを含む。
まず、テストポイントクラウド上で多視点投影を行い、水平および垂直に投影された画像の集合を得る。
そして、異なる投影画像間の空間関係に基づいて、知覚一貫性グラフを構築する。
最後に、構築されたグラフ上の推論を行い、異なる投影画像間の相互依存関係と相互作用を特徴付けるとともに、最終的な品質予測のための多視点投影画像の特徴情報を集約する。
2つの公開ベンチマークデータベースの実験結果から,提案したGC-PCQAは,最先端の品質評価指標よりも優れた性能が得られることが示された。
コードは以下の通り。 https://github.com/chenwuwq/GC-PCQA。
関連論文リスト
- Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-Reference Point Cloud Quality Assessment (NR-PCQA) は、歪んだ点雲の知覚的品質を、参照なしで自動的に評価することを目的としている。
我々は,PCQA(CoPA)に適した新しいコントラスト付き事前学習フレームワークを提案する。
提案手法は,最新のPCQA手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2024-03-15T07:16:07Z) - Activating Frequency and ViT for 3D Point Cloud Quality Assessment
without Reference [0.49157446832511503]
与えられた3D-PCの非参照品質指標を提案する。
入力属性を品質スコアにマップするには、Deformable Convolutional Network(DCN)とViT(ViT)を組み合わせた軽量ハイブリッドディープモデルを用いる。
その結果,本手法は現在のNR-PCQA測度やPointXRのFR-PCQAよりも優れていた。
論文 参考訳(メタデータ) (2023-12-10T19:13:34Z) - Simple Baselines for Projection-based Full-reference and No-reference
Point Cloud Quality Assessment [60.2709006613171]
投影型ポイントクラウド品質評価(PCQA)のための簡易ベースラインを提案する。
我々は、全参照(FR)タスクと非参照(NR)PCQAタスクの両方に対して、点雲から共通立方体状の投影プロセスによって得られる多重射影を用いる。
ICIP 2023 PCVQA Challengeに参加して,5トラック中4トラックで首位を獲得した。
論文 参考訳(メタデータ) (2023-10-26T04:42:57Z) - GPA-Net:No-Reference Point Cloud Quality Assessment with Multi-task
Graph Convolutional Network [35.381247959766505]
グラフ畳み込みPCQAネットワーク(GPA-Net)と呼ばれる新しい非参照PCQAメトリックを提案する。
PCQAに有効な特徴を抽出するために,構造とテクスチャの摂動を注意深く捉えた新しいグラフ畳み込みカーネル,すなわちGPAConvを提案する。
2つの独立したデータベースの実験結果から、GPA-Netは最先端の非参照PCQAメトリクスと比較して最高のパフォーマンスを達成していることが示された。
論文 参考訳(メタデータ) (2022-10-29T03:06:55Z) - MM-PCQA: Multi-Modal Learning for No-reference Point Cloud Quality
Assessment [32.495387943305204]
マルチモーダル方式で,新しい非参照点クラウド品質評価(NR-PCQA)指標を提案する。
具体的には、点雲を部分モデルに分割し、点シフトやダウンサンプリングのような局所的な幾何学的歪みを表す。
目標を達成するために、サブモデルと投影された画像は、ポイントベースおよびイメージベースニューラルネットワークで符号化される。
論文 参考訳(メタデータ) (2022-09-01T06:11:12Z) - Blind Quality Assessment of 3D Dense Point Clouds with Structure Guided
Resampling [71.68672977990403]
本研究では,3次元高密度点雲の知覚的視覚的品質を自動評価するために,Structure Guided Resampling (SGR) を用いた客観的点雲品質指標を提案する。
提案するSGRは,参照情報の不要な汎用ブラインド品質評価手法である。
論文 参考訳(メタデータ) (2022-08-31T02:42:55Z) - Evaluating Point Cloud from Moving Camera Videos: A No-Reference Metric [58.309735075960745]
本稿では,ビデオ品質評価(VQA)手法を用いて,ポイントクラウド品質評価(PCQA)タスクの処理方法について検討する。
捉えたビデオは、いくつかの円形の経路を通して、点雲の周りでカメラを回転させて生成する。
トレーニング可能な2D-CNNモデルと事前学習された3D-CNNモデルを用いて、選択したキーフレームとビデオクリップから空間的・時間的品質認識特徴を抽出する。
論文 参考訳(メタデータ) (2022-08-30T08:59:41Z) - MANIQA: Multi-dimension Attention Network for No-Reference Image Quality
Assessment [18.637040004248796]
No-Reference Image Quality Assessment (NR-IQA) は、人間の主観的知覚に応じて画像の知覚品質を評価することを目的としている。
既存のNR-IQA法は、GANに基づく歪み画像の正確な品質スコアを予測する必要性を満たすには程遠い。
本稿では,非参照画像品質評価(MANIQA)のための多次元注意ネットワークを提案する。
論文 参考訳(メタデータ) (2022-04-19T15:56:43Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。