論文の概要: Simple Baselines for Projection-based Full-reference and No-reference
Point Cloud Quality Assessment
- arxiv url: http://arxiv.org/abs/2310.17147v1
- Date: Thu, 26 Oct 2023 04:42:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-27 22:14:26.067448
- Title: Simple Baselines for Projection-based Full-reference and No-reference
Point Cloud Quality Assessment
- Title(参考訳): 投影型全参照と非参照点クラウド品質評価のための簡易ベースライン
- Authors: Zicheng Zhang, Yingjie Zhou, Wei Sun, Xiongkuo Min, Guangtao Zhai
- Abstract要約: 投影型ポイントクラウド品質評価(PCQA)のための簡易ベースラインを提案する。
我々は、全参照(FR)タスクと非参照(NR)PCQAタスクの両方に対して、点雲から共通立方体状の投影プロセスによって得られる多重射影を用いる。
ICIP 2023 PCVQA Challengeに参加して,5トラック中4トラックで首位を獲得した。
- 参考スコア(独自算出の注目度): 60.2709006613171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Point clouds are widely used in 3D content representation and have various
applications in multimedia. However, compression and simplification processes
inevitably result in the loss of quality-aware information under storage and
bandwidth constraints. Therefore, there is an increasing need for effective
methods to quantify the degree of distortion in point clouds. In this paper, we
propose simple baselines for projection-based point cloud quality assessment
(PCQA) to tackle this challenge. We use multi-projections obtained via a common
cube-like projection process from the point clouds for both full-reference (FR)
and no-reference (NR) PCQA tasks. Quality-aware features are extracted with
popular vision backbones. The FR quality representation is computed as the
similarity between the feature maps of reference and distorted projections
while the NR quality representation is obtained by simply squeezing the feature
maps of distorted projections with average pooling The corresponding quality
representations are regressed into visual quality scores by fully-connected
layers. Taking part in the ICIP 2023 PCVQA Challenge, we succeeded in achieving
the top spot in four out of the five competition tracks.
- Abstract(参考訳): ポイントクラウドは3Dコンテンツ表現に広く使われ、マルチメディアに様々な応用がある。
しかし、圧縮と単純化のプロセスは必然的にストレージや帯域幅の制約の下で品質に配慮した情報が失われる。
したがって、点雲の歪みの度合いを定量化する効果的な方法の必要性が高まっている。
本稿では,この課題に対処するために,投影型ポイントクラウド品質評価(PCQA)のためのシンプルなベースラインを提案する。
我々は、全参照(FR)タスクと非参照(NR)PCQAタスクの両方に対して、点雲から共通立方体状の投影プロセスによって得られる多重射影を用いる。
品質認識機能は、一般的なビジョンバックボーンで抽出される。
FR品質表現は、参照射影と歪射影の特徴マップの類似性として計算され、NR品質表現は、歪射影の特徴マップを平均プーリングで単純にスクイーズすることで得られる。
ICIP 2023 PCVQA Challengeに参加して,5トラック中4トラックで首位を獲得した。
関連論文リスト
- No-Reference Point Cloud Quality Assessment via Graph Convolutional Network [89.12589881881082]
3次元(3D)ポイントクラウドは、新しいビジュアルメディアフォーマットとして、消費者にますます好まれている。
ポイントクラウドは、必然的に、マルチメディア通信システムによる品質劣化と情報損失に悩まされる。
マルチビュー2次元投影画像の相互依存関係を特徴付けるために,GCN(Graph Convolutional Network)を用いた新しい非参照PCQA手法を提案する。
論文 参考訳(メタデータ) (2024-11-12T11:39:05Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-Reference Point Cloud Quality Assessment (NR-PCQA) は、歪んだ点雲の知覚的品質を、参照なしで自動的に評価することを目的としている。
我々は,PCQA(CoPA)に適した新しいコントラスト付き事前学習フレームワークを提案する。
提案手法は,最新のPCQA手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2024-03-15T07:16:07Z) - Activating Frequency and ViT for 3D Point Cloud Quality Assessment
without Reference [0.49157446832511503]
与えられた3D-PCの非参照品質指標を提案する。
入力属性を品質スコアにマップするには、Deformable Convolutional Network(DCN)とViT(ViT)を組み合わせた軽量ハイブリッドディープモデルを用いる。
その結果,本手法は現在のNR-PCQA測度やPointXRのFR-PCQAよりも優れていた。
論文 参考訳(メタデータ) (2023-12-10T19:13:34Z) - Reduced-Reference Quality Assessment of Point Clouds via
Content-Oriented Saliency Projection [17.983188216548005]
多くの高密度な3Dポイントクラウドは、従来の画像やビデオではなく、視覚オブジェクトを表現するために利用されてきた。
本稿では, 点雲に対する新しい, 効率的な還元参照品質指標を提案する。
論文 参考訳(メタデータ) (2023-01-18T18:00:29Z) - MM-PCQA: Multi-Modal Learning for No-reference Point Cloud Quality
Assessment [32.495387943305204]
マルチモーダル方式で,新しい非参照点クラウド品質評価(NR-PCQA)指標を提案する。
具体的には、点雲を部分モデルに分割し、点シフトやダウンサンプリングのような局所的な幾何学的歪みを表す。
目標を達成するために、サブモデルと投影された画像は、ポイントベースおよびイメージベースニューラルネットワークで符号化される。
論文 参考訳(メタデータ) (2022-09-01T06:11:12Z) - Blind Quality Assessment of 3D Dense Point Clouds with Structure Guided
Resampling [71.68672977990403]
本研究では,3次元高密度点雲の知覚的視覚的品質を自動評価するために,Structure Guided Resampling (SGR) を用いた客観的点雲品質指標を提案する。
提案するSGRは,参照情報の不要な汎用ブラインド品質評価手法である。
論文 参考訳(メタデータ) (2022-08-31T02:42:55Z) - Evaluating Point Cloud from Moving Camera Videos: A No-Reference Metric [58.309735075960745]
本稿では,ビデオ品質評価(VQA)手法を用いて,ポイントクラウド品質評価(PCQA)タスクの処理方法について検討する。
捉えたビデオは、いくつかの円形の経路を通して、点雲の周りでカメラを回転させて生成する。
トレーニング可能な2D-CNNモデルと事前学習された3D-CNNモデルを用いて、選択したキーフレームとビデオクリップから空間的・時間的品質認識特徴を抽出する。
論文 参考訳(メタデータ) (2022-08-30T08:59:41Z) - Reduced Reference Perceptual Quality Model and Application to Rate
Control for 3D Point Cloud Compression [61.110938359555895]
レート歪み最適化では、ビットレートの制約を受ける再構成品質尺度を最大化してエンコーダ設定を決定する。
本稿では,V-PCC幾何および色量化パラメータを変数とする線形知覚品質モデルを提案する。
400個の圧縮された3D点雲による主観的品質試験の結果,提案モデルが平均評価値とよく相関していることが示唆された。
また、同じ目標ビットレートに対して、提案モデルに基づくレート歪みの最適化は、ポイント・ツー・ポイントの客観的な品質指標による徹底的な探索に基づくレート歪みの最適化よりも高い知覚品質を提供することを示した。
論文 参考訳(メタデータ) (2020-11-25T12:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。