BIMRL: Brain Inspired Meta Reinforcement Learning
- URL: http://arxiv.org/abs/2210.16530v1
- Date: Sat, 29 Oct 2022 08:34:47 GMT
- Title: BIMRL: Brain Inspired Meta Reinforcement Learning
- Authors: Seyed Roozbeh Razavi Rohani, Saeed Hedayatian, Mahdieh Soleymani
Baghshah
- Abstract summary: An efficient agent must be able to leverage its prior experiences to quickly adapt to similar, but new tasks and situations.
We introduce BIMRL, a novel multi-layer architecture along with a novel brain-inspired memory module.
We empirically validate the effectiveness of our proposed method by competing with or surpassing the performance of some strong baselines on multiple MiniGrid environments.
- Score: 5.993003891247583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sample efficiency has been a key issue in reinforcement learning (RL). An
efficient agent must be able to leverage its prior experiences to quickly adapt
to similar, but new tasks and situations. Meta-RL is one attempt at formalizing
and addressing this issue. Inspired by recent progress in meta-RL, we introduce
BIMRL, a novel multi-layer architecture along with a novel brain-inspired
memory module that will help agents quickly adapt to new tasks within a few
episodes. We also utilize this memory module to design a novel intrinsic reward
that will guide the agent's exploration. Our architecture is inspired by
findings in cognitive neuroscience and is compatible with the knowledge on
connectivity and functionality of different regions in the brain. We
empirically validate the effectiveness of our proposed method by competing with
or surpassing the performance of some strong baselines on multiple MiniGrid
environments.
Related papers
- ReLIC: A Recipe for 64k Steps of In-Context Reinforcement Learning for Embodied AI [44.77897322913095]
We present ReLIC, a new approach for in-context reinforcement learning for embodied agents.
With ReLIC, agents are capable of adapting to new environments using 64,000 steps of in-context experience.
We find that ReLIC is capable of few-shot imitation learning despite never being trained with expert demonstrations.
arXiv Detail & Related papers (2024-10-03T17:58:11Z) - UMBRAE: Unified Multimodal Brain Decoding [43.6339793925953]
We propose UMBRAE, a unified multimodal decoding of brain signals.
We introduce an efficient universal brain encoder for multimodal-brain alignment.
We also introduce a cross-subject training strategy mapping subject-specific features to a common feature space.
arXiv Detail & Related papers (2024-04-10T17:59:20Z) - Neural Routing in Meta Learning [9.070747377130472]
We aim to improve the model performance of the current meta learning algorithms by selectively using only parts of the model conditioned on the input tasks.
In this work, we describe an approach that investigates task-dependent dynamic neuron selection in deep convolutional neural networks (CNNs) by leveraging the scaling factor in the batch normalization layer.
We find that the proposed approach, neural routing in meta learning (NRML), outperforms one of the well-known existing meta learning baselines on few-shot classification tasks.
arXiv Detail & Related papers (2022-10-14T16:31:24Z) - Meta Reinforcement Learning with Successor Feature Based Context [51.35452583759734]
We propose a novel meta-RL approach that achieves competitive performance comparing to existing meta-RL algorithms.
Our method does not only learn high-quality policies for multiple tasks simultaneously but also can quickly adapt to new tasks with a small amount of training.
arXiv Detail & Related papers (2022-07-29T14:52:47Z) - On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning [71.55412580325743]
We show that multi-task pretraining with fine-tuning on new tasks performs equally as well, or better, than meta-pretraining with meta test-time adaptation.
This is encouraging for future research, as multi-task pretraining tends to be simpler and computationally cheaper than meta-RL.
arXiv Detail & Related papers (2022-06-07T13:24:00Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - REIN-2: Giving Birth to Prepared Reinforcement Learning Agents Using
Reinforcement Learning Agents [0.0]
In this paper, we introduce a meta-learning scheme that shifts the objective of learning to solve a task into the objective of learning to learn to solve a task (or a set of tasks)
Our model, named REIN-2, is a meta-learning scheme formulated within the RL framework, the goal of which is to develop a meta-RL agent that learns how to produce other RL agents.
Compared to traditional state-of-the-art Deep RL algorithms, experimental results show remarkable performance of our model in popular OpenAI Gym environments.
arXiv Detail & Related papers (2021-10-11T10:13:49Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
Recurrent meta reinforcement learning (meta-RL) agents are agents that employ a recurrent neural network (RNN) for the purpose of "learning a learning algorithm"
We shed light on the internal working mechanisms of these agents by reformulating the meta-RL problem using the Partially Observable Markov Decision Process (POMDP) framework.
arXiv Detail & Related papers (2021-04-29T20:34:39Z) - A Dual-Memory Architecture for Reinforcement Learning on Neuromorphic
Platforms [3.0616624345970975]
We describe a flexible architecture to carry out reinforcement learning on neuromorphic platforms.
This architecture was implemented using an Intel neuromorphic processor and demonstrated solving a variety of tasks using spiking dynamics.
Our study proposes a usable energy efficient solution for real-world RL applications and demonstrates applicability of the neuromorphic platforms for RL problems.
arXiv Detail & Related papers (2021-03-05T01:54:22Z) - MetaCURE: Meta Reinforcement Learning with Empowerment-Driven
Exploration [52.48362697163477]
Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on sparse-reward tasks.
We model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning.
We develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies.
arXiv Detail & Related papers (2020-06-15T06:56:18Z) - Meta Reinforcement Learning with Autonomous Inference of Subtask
Dependencies [57.27944046925876]
We propose and address a novel few-shot RL problem, where a task is characterized by a subtask graph.
Instead of directly learning a meta-policy, we develop a Meta-learner with Subtask Graph Inference.
Our experiment results on two grid-world domains and StarCraft II environments show that the proposed method is able to accurately infer the latent task parameter.
arXiv Detail & Related papers (2020-01-01T17:34:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.