論文の概要: Diverse Parallel Data Synthesis for Cross-Database Adaptation of
Text-to-SQL Parsers
- arxiv url: http://arxiv.org/abs/2210.16613v1
- Date: Sat, 29 Oct 2022 14:30:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-01 14:46:40.639671
- Title: Diverse Parallel Data Synthesis for Cross-Database Adaptation of
Text-to-SQL Parsers
- Title(参考訳): テキスト-SQL パーサのクロスデータベース適応のための多元並列データ合成
- Authors: Abhijeet Awasthi, Ashutosh Sathe, Sunita Sarawagi
- Abstract要約: 新しいデータベースへの適応は、新しいスキーマに自然言語クエリがないため、難しい問題である。
ターゲットスキーマにText-to-editを適用するためのフレームワークであるReFillを提案する。
- 参考スコア(独自算出の注目度): 21.272952382662215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-SQL parsers typically struggle with databases unseen during the train
time. Adapting parsers to new databases is a challenging problem due to the
lack of natural language queries in the new schemas. We present ReFill, a
framework for synthesizing high-quality and textually diverse parallel datasets
for adapting a Text-to-SQL parser to a target schema. ReFill learns to
retrieve-and-edit text queries from the existing schemas and transfers them to
the target schema. We show that retrieving diverse existing text, masking their
schema-specific tokens, and refilling with tokens relevant to the target
schema, leads to significantly more diverse text queries than achievable by
standard SQL-to-Text generation methods. Through experiments spanning multiple
databases, we demonstrate that fine-tuning parsers on datasets synthesized
using ReFill consistently outperforms the prior data-augmentation methods.
- Abstract(参考訳): テキストからSQLへのパーサは、通常、列車の時間中に見つからないデータベースと苦労する。
新しいデータベースへのパーサーの適用は、新しいスキーマで自然言語クエリが欠如しているため、難しい問題である。
ReFillは、テキストからSQLへのパーサをターゲットスキーマに適応させるために、高品質で多種多様な並列データセットを合成するフレームワークである。
refillは既存のスキーマからテキストクエリの検索と編集を学び、ターゲットスキーマに転送する。
既存のさまざまなテキストを検索し、スキーマ固有のトークンをマスクし、ターゲットスキーマに関連するトークンを埋め込むことで、標準のSQL-to-Text生成方法よりもはるかに多様なテキストクエリが得られることを示す。
複数のデータベースにまたがる実験を通じて,refillを用いて合成したデータセット上の微調整パーサが,従来のデータ提供手法を一貫して上回っていることを実証する。
関連論文リスト
- Schema-Aware Multi-Task Learning for Complex Text-to-SQL [4.913409359995421]
複雑なsqlクエリのためのスキーマ対応マルチタスク学習フレームワーク(MT)を提案する。
具体的には、有効な質問スキーマリンクを識別するために、識別器モジュールを設計する。
デコーダ側では、テーブルと列の接続を記述するために、6種類の関係を定義します。
論文 参考訳(メタデータ) (2024-03-09T01:13:37Z) - SQLformer: Deep Auto-Regressive Query Graph Generation for Text-to-SQL Translation [16.07396492960869]
本稿では,テキストからテキストへの変換処理に特化して設計されたトランスフォーマーアーキテクチャを提案する。
我々のモデルは、実行可能層とデコーダ層に構造的帰納バイアスを組み込んで、クエリを自動で抽象構文木(AST)として予測する。
論文 参考訳(メタデータ) (2023-10-27T00:13:59Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
テキスト・ツー・ドメイン・システムのためのUNIfiedベンチマークを導入する。
公開されているテキストからドメインへのデータセットと29Kデータベースで構成されている。
広く使われているSpiderベンチマークと比較すると、SQLパターンの3倍の増加が紹介されている。
論文 参考訳(メタデータ) (2023-05-25T17:19:52Z) - Prompting GPT-3.5 for Text-to-SQL with De-semanticization and Skeleton
Retrieval [17.747079214502673]
Text-to-は、自然言語の質問を構造化されたクエリ言語()に変換し、データベースから情報を取得するタスクである。
本稿では,テキスト・トゥ・テキストのための LLM ベースのフレームワークを提案する。
我々は,疑問骨格を抽出する非意味化機構を設計し,その構造的類似性に基づいて類似した例を検索する。
論文 参考訳(メタデータ) (2023-04-26T06:02:01Z) - On the Structural Generalization in Text-to-SQL [36.56043090037171]
データベーススキーマ(DS)の構造的多様性について検討する。
本稿では,新しいテキスト間構造データを生成するフレームワークを提案する。
合成試料を用いたテキスト・ツー・モデルの評価における顕著な性能低下
論文 参考訳(メタデータ) (2023-01-12T02:52:51Z) - Importance of Synthesizing High-quality Data for Text-to-SQL Parsing [71.02856634369174]
最先端のテキストから重み付けアルゴリズムは、強化された合成データでトレーニングされた場合、一般的なベンチマークでは改善されなかった。
本稿では,スキーマから重要な関係を取り入れ,強い型付けを課し,スキーマ重み付きカラムサンプリングを行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-17T02:53:21Z) - Augmenting Multi-Turn Text-to-SQL Datasets with Self-Play [46.07002748587857]
我々は、コンテキスト情報を活用して新しいインタラクションを合成するセルフプレイによるトレーニングデータセットの強化について検討する。
本研究では,SParCとCoという2つの広く使われているテキスト・ドメイン・データセットの強いベースラインの精度を向上させることを発見した。
論文 参考訳(メタデータ) (2022-10-21T16:40:07Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
テキストからコーパスへのパースの目的は、自然言語(NL)質問をデータベースが提供するエビデンスに基づいて、対応する構造化クエリ言語()に変換することである。
ディープニューラルネットワークは、入力NL質問から出力クエリへのマッピング関数を自動的に学習するニューラルジェネレーションモデルによって、このタスクを大幅に進歩させた。
論文 参考訳(メタデータ) (2022-08-29T14:24:13Z) - Proton: Probing Schema Linking Information from Pre-trained Language
Models for Text-to-SQL Parsing [66.55478402233399]
本稿では,ポアンカー距離測定に基づく探索手法を用いて,関係構造を抽出する枠組みを提案する。
スキーマリンクの一般的なルールベース手法と比較して,探索関係は意味的対応をしっかりと捉えることができることがわかった。
我々のフレームワークは3つのベンチマークで最先端のパフォーマンスを新たに設定する。
論文 参考訳(メタデータ) (2022-06-28T14:05:25Z) - Bridging Textual and Tabular Data for Cross-Domain Text-to-SQL Semantic
Parsing [110.97778888305506]
BRIDGEは、フィールドのサブセットが質問に言及されたセル値で拡張されるタグ付きシーケンスの質問とDBスキーマを表します。
BRIDGEは、人気のクロスDBテキスト-リレーショナルベンチマークで最先端のパフォーマンスを達成しました。
本分析は,BRIDGEが望まれる相互依存を効果的に捕捉し,さらにテキストDB関連タスクに一般化する可能性を示唆している。
論文 参考訳(メタデータ) (2020-12-23T12:33:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。