Simultaneous multiple angular displacement estimation precision enhanced
by the intramode correlation
- URL: http://arxiv.org/abs/2210.16831v1
- Date: Sun, 30 Oct 2022 12:53:10 GMT
- Title: Simultaneous multiple angular displacement estimation precision enhanced
by the intramode correlation
- Authors: Shoukang Chang, Wei Ye, Xuan Rao, Huan Zhang, Liqing Huang, Mengmeng
Luo, Yuetao Chen, Shaoyan Gao
- Abstract summary: We investigate the simultaneous multiple angular displacement estimation based on an orbital angular momentum (OAM)
By revealing the role of the intramode correlation of the probe state, this allows us to give a reasonable explanation for the corresponding quantum Cramer-Rao bound (QCRB) behaviors.
- Score: 10.085861117247331
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The angular displacement estimation is one of significant branches of quantum
parameter estimation. However, most of the studies have focused on the
single-angular displacement estimation, while the multiple angular displacement
estimation in ideal and noisy scenarios is still elusive. In this paper, we
investigate the simultaneous multiple angular displacement estimation based on
an orbital angular momentum (OAM), together with inputting (d + 1)-mode
NOON-like states as the probe state. By revealing the role of the intramode
correlation of the probe state, this allows us to give a reasonable explanation
for the corresponding quantum Cramer-Rao bound (QCRB) behaviors with and
without photon losses. Our analyses suggest that the QCRB for the multiple
angular displacement estimation is always positively related to the intramode
correlation, especially for the multimode entangled squeezed vacuum state
showing the best performance compared to another probe state. More importantly,
strengthening the robustness of multiple angular-displacement estimation
systems can be achieved by increasing the OAM quantum number.
Related papers
- Tripartite entanglement from experimental data: $B^0\to K^{*0}μ^+μ^-$ as a case study [49.1574468325115]
We develop an angular analysis based on the reconstruction of the helicity amplitudes from dedicated experimental data corresponding to the tripartite state composed by one qutrit and two qubits.
As an application of our analysis, we performed a full quantum tomography of the final state in the $B0to K*0mu+mu-$ decays using data recorded by LHCb collaboration.
arXiv Detail & Related papers (2024-09-19T18:10:14Z) - The role of gaps in digitized counterdiabatic QAOA for fully-connected spin models [0.0]
CD corrections to the quantum approximate optimization algorithm (QAOA) have been proposed, yielding faster convergence within the desired accuracy than standard QAOA.
We show that the performances of the algorithm are related to the spectral properties of the instances analyzed.
arXiv Detail & Related papers (2024-09-05T13:17:56Z) - Superresolution in separation estimation between two dynamic incoherent sources using spatial demultiplexing [0.0]
Recently, perfect measurement based on spatial mode demultiplexing (SPADE) in Hermite-Gauss modes allowed one to reach the quantum limit of precision for estimation of separation between two weak incoherent stationary sources.
In this paper, we consider another deviation from the perfect setup by discarding the assumption about the stationarity of the sources.
We formulate a measurement algorithm that allows for the reduction of one parameter for estimation in the stationary sources scenario.
arXiv Detail & Related papers (2024-07-15T07:57:57Z) - Multi-parameter quantum estimation of single- and two-mode pure Gaussian
states [0.0]
We derive the Holevo Cram'er-Rao bound (HCRB) for both displacement and squeezing parameter characterizing single and two-mode squeezed states.
In the single-mode scenario, we obtain an analytical bound and find that it degrades monotonically as the squeezing increases.
In the two-mode setting, the HCRB improves as the squeezing parameter grows and we show that it can be attained using double-homodyne detection.
arXiv Detail & Related papers (2024-03-06T18:29:17Z) - Joint estimation of a two-phase spin rotation beyond classical limit [11.887327647811661]
In diverse application scenarios, the estimation of more than one single parameter is often required.
We report quantum-enhanced measurement of simultaneous spin rotations around two axes, making use of spin-nematic squeezing in an atomic Bose-Einstein condensate.
arXiv Detail & Related papers (2023-12-16T15:21:00Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Optimal estimation of conjugate shifts in position and momentum by
classically correlated probes and measurements [1.1470070927586016]
We show that the same results can be obtained by employing independent sets of differently squeezed Gaussian states classically correlated to position or momentum measurements.
This result demonstrates an unexplored power of a classical correlation between the probe states and measurements directly applicable to force sensing.
arXiv Detail & Related papers (2022-03-07T12:52:15Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z) - Fast approximations in the homogeneous Ising model for use in scene
analysis [61.0951285821105]
We provide accurate approximations that make it possible to numerically calculate quantities needed in inference.
We show that our approximation formulae are scalable and unfazed by the size of the Markov Random Field.
The practical import of our approximation formulae is illustrated in performing Bayesian inference in a functional Magnetic Resonance Imaging activation detection experiment, and also in likelihood ratio testing for anisotropy in the spatial patterns of yearly increases in pistachio tree yields.
arXiv Detail & Related papers (2017-12-06T14:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.