論文の概要: IQGAN: Robust Quantum Generative Adversarial Network for Image Synthesis
On NISQ Devices
- arxiv url: http://arxiv.org/abs/2210.16857v1
- Date: Sun, 30 Oct 2022 14:52:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-21 00:41:36.931499
- Title: IQGAN: Robust Quantum Generative Adversarial Network for Image Synthesis
On NISQ Devices
- Title(参考訳): IQGAN: NISQデバイス上での画像合成のためのロバスト量子生成逆ネットワーク
- Authors: Cheng Chu, Grant Skipper, Martin Swany and Fan Chen
- Abstract要約: 我々は、ノイズ中間量子(NISQ)デバイス上で効率よく実装できるマルチキュービット画像合成フレームワークIQGANを提案する。
そこで我々は,古典的データを量子状態に効果的に埋め込む訓練可能なマルチキュービット量子エンコーダを特徴とするIQGANアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 2.4123561871510275
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this work, we propose IQGAN, a quantum Generative Adversarial Network
(GAN) framework for multiqubit image synthesis that can be efficiently
implemented on Noisy Intermediate Scale Quantum (NISQ) devices. We investigate
the reasons for the inferior generative performance of current quantum GANs in
our preliminary study and conclude that an adjustable input encoder is the key
to ensuring high-quality data synthesis. We then propose the IQGAN architecture
featuring a trainable multiqubit quantum encoder that effectively embeds
classical data into quantum states. Furthermore, we propose a compact quantum
generator that significantly reduces the design cost and circuit depth on NISQ
devices. Experimental results on both IBM quantum processors and quantum
simulators demonstrated that IQGAN outperforms state-of-the-art quantum GANs in
qualitative and quantitative evaluation of the generated samples, model
convergence, and quantum computing cost.
- Abstract(参考訳): 本研究では,ノイズ中間スケール量子(NISQ)デバイス上で効率よく実装可能な,マルチキュービット画像合成のための量子生成適応ネットワーク(GAN)フレームワークであるIQGANを提案する。
予備研究において、現在の量子GANが劣った生成性能を示す理由を考察し、調整可能な入力エンコーダが高品質なデータ合成の鍵であることを結論づける。
次に,従来のデータを量子状態に効果的に埋め込む訓練可能なマルチキュービット量子エンコーダを備えたIQGANアーキテクチャを提案する。
さらに,NISQデバイスの設計コストと回路深さを大幅に低減する小型量子発生器を提案する。
IBM量子プロセッサと量子シミュレータの実験結果は、IQGANが生成したサンプル、モデル収束、量子コンピューティングコストの質的かつ定量的評価において、最先端の量子GANよりも優れていることを示した。
関連論文リスト
- LatentQGAN: A Hybrid QGAN with Classical Convolutional Autoencoder [7.945302052915863]
量子機械学習の潜在的な応用は、古典的なデータを生成するために量子コンピュータのパワーを利用することである。
本稿では,自己エンコーダと結合したハイブリッド量子古典的GANを用いた新しい量子モデルであるLatntQGANを提案する。
論文 参考訳(メタデータ) (2024-09-22T23:18:06Z) - Hybrid Quantum-Classical Normalizing Flow [5.85475369017678]
パラメータ化量子回路に基づくハイブリッド量子古典正規化フロー(HQCNF)モデルを提案する。
我々は画像生成問題でモデルを検証した。
量子生成逆数ネットワーク(QGAN)のような他の量子生成モデルと比較して、我々のモデルはFr'echet 距離(FID)の低いスコアを得る。
論文 参考訳(メタデータ) (2024-05-22T16:37:22Z) - Variational Quantum Circuits Enhanced Generative Adversarial Network [5.209320054725053]
我々は、GAN(QC-GAN)を改善するためのハイブリッド量子古典アーキテクチャを提案する。
QC-GANは1層ニューラルネットワークと共に量子変動回路で構成され、識別器は従来のニューラルネットワークで構成されている。
また、QC-GANが16ドル以上の画像を生成することのできない代替量子GAN、すなわちpathGANよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-02-02T03:59:35Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Quantum Neuron with Separable-State Encoding [0.0]
現在利用可能な量子プロセッサにおいて、高度な量子ニューロンモデルを大規模にテストすることは、まだ不可能である。
マルチキュービットゲート数を削減した量子パーセプトロン(QP)モデルを提案する。
シミュレーション量子コンピュータにおいて,QPの量子ビットバージョンをいくつか実装することにより,提案モデルの性能を実証する。
論文 参考訳(メタデータ) (2022-02-16T19:26:23Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
可変量子回路(VQC)上に量子埋め込みを行うためのトレーニング可能な量子テンソルネットワーク(QTN)を導入する。
QTNは、量子埋め込みの生成から出力測定まで、エンドツーエンドのパラメトリックモデルパイプライン、すなわちQTN-VQCを可能にする。
MNISTデータセットに対する我々の実験は、他の量子埋め込み手法に対する量子埋め込みに対するQTNの利点を実証している。
論文 参考訳(メタデータ) (2021-10-06T14:44:51Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
量子生成逆数ネットワーク(量子GAN, EQ-GAN)のための新しいタイプのアーキテクチャを提案する。
EQ-GANはコヒーレントなエラーに対してさらなる堅牢性を示し、Google Sycamore超伝導量子プロセッサで実験的にEQ-GANの有効性を示す。
論文 参考訳(メタデータ) (2021-04-30T20:38:41Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。