Nonlinear feedforward enabling quantum computation
- URL: http://arxiv.org/abs/2210.17120v1
- Date: Mon, 31 Oct 2022 07:56:08 GMT
- Title: Nonlinear feedforward enabling quantum computation
- Authors: Atsushi Sakaguchi, Shunya Konno, Fumiya Hanamura, Warit Asavanant, Kan
Takase, Hisashi Ogawa, Petr Marek, Radim Filip, Jun-ichi Yoshikawa, Elanor
Huntington, Hidehiro Yonezawa, Akira Furusawa
- Abstract summary: Measurement-based quantum computation with optical time-domain multiplexing is a promising method to realize a quantum computer from the viewpoint of scalability.
Fault tolerance and universality are also realizable by preparing appropriate resource quantum states and electro-optical feedforward that is altered based on measurement results.
We demonstrate that a fast and flexible nonlinear feedforward realizes the essential measurement required for fault-tolerant and universal quantum computation.
- Score: 1.4001701321481363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Measurement-based quantum computation with optical time-domain multiplexing
is a promising method to realize a quantum computer from the viewpoint of
scalability. Fault tolerance and universality are also realizable by preparing
appropriate resource quantum states and electro-optical feedforward that is
altered based on measurement results. While a linear feedforward has been
realized and become a common experimental technique, nonlinear feedforward was
unrealized until now. In this paper, we demonstrate that a fast and flexible
nonlinear feedforward realizes the essential measurement required for
fault-tolerant and universal quantum computation. Using non-Gaussian ancillary
states we observed 10$\%$ reduction of the measurement excess noise relative to
classical vacuum ancilla.
Related papers
- Quantum metrology with a squeezed Kerr oscillator [0.0]
We study the squeezing dynamics in a Kerr-nonlinear oscillator, and quantify the metrological usefulness of the resulting states.
We propose the use of a measurement-after-interaction protocol where a linear quadrature measurement is preceded by an additional nonlinear evolution.
Our results are robust when considering realistic imperfections such as energy relaxation, and can be implemented in state-of-the-art experimental setups.
arXiv Detail & Related papers (2024-06-17T17:41:03Z) - Nonlinear response theory for lossy superconducting quantum circuits [0.0]
We introduce a numerically exact and yet computationally feasible nonlinear response theory for lossy superconducting quantum circuits.
We derive a weak-coupling approximation in the presence of a drive, and demonstrate the applicability of our formalism through a study on the dispersive readout of a superconducting qubit.
arXiv Detail & Related papers (2023-10-24T12:53:10Z) - Physics-Informed Neural Networks for an optimal counterdiabatic quantum
computation [32.73124984242397]
We introduce a novel methodology that leverages the strength of Physics-Informed Neural Networks (PINNs) to address the counterdiabatic (CD) protocol in the optimization of quantum circuits comprised of systems with $N_Q$ qubits.
The main applications of this methodology have been the $mathrmH_2$ and $mathrmLiH$ molecules, represented by a 2-qubit and 4-qubit systems employing the STO-3G basis.
arXiv Detail & Related papers (2023-09-08T16:55:39Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Universal quantum computation and quantum error correction using
discrete holonomies [0.0]
Holonomic quantum computation exploits a quantum state's non-trivial, matrix-valued geometric phase (holonomy) to perform fault-tolerant computation.
We show that quantum error correction codes integrate naturally in our scheme, providing a model for measurement-based quantum computation.
arXiv Detail & Related papers (2021-09-08T14:55:17Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - The Reservoir Learning Power across Quantum Many-Boby Localization
Transition [27.693120770022198]
We study the learning power of a one-dimensional long-range randomly-coupled quantum spin chain.
In time sequence learning tasks, we find the system in the quantum many-body localized (MBL) phase holds long-term memory.
We find optimal learning performance near the MBL-to-ergodic transition.
arXiv Detail & Related papers (2021-04-06T18:00:06Z) - Quantum reservoir computing with a single nonlinear oscillator [0.0]
We propose continuous variable quantum reservoir computing in a single nonlinear oscillator.
We demonstrate quantum-classical performance improvement, and identify its likely source: the nonlinearity of quantum measurement.
We study how the performance of our quantum reservoir depends on Hilbert space dimension, how it is impacted by injected noise, and briefly comment on its experimental implementation.
arXiv Detail & Related papers (2020-04-30T17:14:34Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - An optimal measurement strategy to beat the quantum uncertainty in
correlated system [0.6091702876917281]
Uncertainty principle undermines the precise measurement of incompatible observables.
Entanglement, another unique feature of quantum physics, was found may help to reduce the quantum uncertainty.
arXiv Detail & Related papers (2020-02-23T05:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.