Nonlinear response theory for lossy superconducting quantum circuits
- URL: http://arxiv.org/abs/2310.15802v1
- Date: Tue, 24 Oct 2023 12:53:10 GMT
- Title: Nonlinear response theory for lossy superconducting quantum circuits
- Authors: V. Vadimov, M. Xu, J. T. Stockburger, J. Ankerhold, and M.
M\"ott\"onen
- Abstract summary: We introduce a numerically exact and yet computationally feasible nonlinear response theory for lossy superconducting quantum circuits.
We derive a weak-coupling approximation in the presence of a drive, and demonstrate the applicability of our formalism through a study on the dispersive readout of a superconducting qubit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a numerically exact and yet computationally feasible nonlinear
response theory developed for lossy superconducting quantum circuits based on a
framework of quantum dissipation in a minimally extended state space. Starting
from the Feynman--Vernon path integral formalism for open quantum systems with
the system degrees of freedom being the nonlinear elements of the circuit, we
eliminate the temporally non-local influence functional of all linear elements
by introducing auxiliary harmonic modes with complex-valued frequencies coupled
to the non-linear degrees of freedom of the circuit. In our work, we propose a
concept of time-averaged observables, inspired by experiment, and provide an
explicit formula for producing their quasiprobability distribution.
Furthermore, we systematically derive a weak-coupling approximation in the
presence of a drive, and demonstrate the applicability of our formalism through
a study on the dispersive readout of a superconducting qubit. The developed
framework enables a comprehensive fully quantum-mechanical treatment of
nonlinear quantum circuits coupled to their environment, without the
limitations of typical approaches to weak dissipation, high temperature, and
weak drive. Furthermore, we discuss the implications of our findings to the
quantum measurement theory.
Related papers
- Predictive simulations of the dynamical response of mesoscopic devices [0.0]
We describe a general framework to simulate the low-energy quantum dynamics of such complex systems.
We demonstrate the methods introduced in this paper on the example of a single quantum dot coupled to a topological superconductor.
arXiv Detail & Related papers (2025-02-18T15:44:40Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum nonlinear optics on the edge of small lattice fractional quantum Hall fluids [0.0]
We study the quantum dynamics of the edge modes of lattice fractional quantum Hall liquids in response to time-dependent external potentials.
We show that the nonlinear chiral Luttinger liquid theory provides a quantitatively accurate description even for the small lattice geometries.
arXiv Detail & Related papers (2024-03-15T18:00:02Z) - Toolbox for nonreciprocal dispersive models in circuit QED [41.94295877935867]
We provide a systematic method for constructing effective dispersive Lindblad master equations to describe weakly anharmonic superconducting circuits coupled by a generic dissipationless nonreciprocal linear system.
Results can be used for the design of complex superconducting quantum processors with nontrivial routing of quantum information, as well as quantum simulators of condensed matter systems.
arXiv Detail & Related papers (2023-12-13T18:44:55Z) - Quantum memories for squeezed and coherent superpositions in a driven-dissipative nonlinear oscillator [0.9217021281095907]
Superconducting circuits have been employed to realize long-lived qubits stored in coherent states.
We show that coherent superpositions of squeezed states are achievable in the presence of a strong symmetry.
We investigate the potential application of these nonlinear driven-dissipative resonators for quantum computing and quantum associative memory.
arXiv Detail & Related papers (2023-09-12T15:06:08Z) - Generalised linear response theory for the full quantum work statistics [0.3277163122167433]
We study a quantum system driven out of equilibrium via a small Hamiltonian perturbation.
We find that all information about the distribution can be encoded in a single quantity.
arXiv Detail & Related papers (2023-07-04T19:06:50Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Nonlinear feedforward enabling quantum computation [1.4001701321481363]
Measurement-based quantum computation with optical time-domain multiplexing is a promising method to realize a quantum computer from the viewpoint of scalability.
Fault tolerance and universality are also realizable by preparing appropriate resource quantum states and electro-optical feedforward that is altered based on measurement results.
We demonstrate that a fast and flexible nonlinear feedforward realizes the essential measurement required for fault-tolerant and universal quantum computation.
arXiv Detail & Related papers (2022-10-31T07:56:08Z) - Nonlinear speed-ups in ultracold quantum gases [0.0]
We analyze whether and to what extent such nonlinear effects can be exploited to enhance the rate of quantum evolution.
We find that the quantum speed limit grows with the strength of the nonlinearity, yet it does not trivially scale with the degree'' of nonlinearity.
arXiv Detail & Related papers (2022-06-27T15:14:47Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Quantifying fermionic nonlinearity of quantum circuits [0.5658123802733283]
We quantify the classical simulatability of quantum circuits designed for simulating fermionic Hamiltonians.
We find that, depending on the error probability and atomic spacing, there are regions where the fermionic nonlinearity becomes very small or unity.
arXiv Detail & Related papers (2021-11-29T15:31:43Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Dissipation-engineering of nonreciprocal quantum dot circuits: An
input-output approach [6.211723927647019]
Nonreciprocal effects in nanoelectronic devices offer unique possibilities for manipulating electron transport and engineering quantum electronic circuits.
We provide a general input-output description of nonreciprocal transport in solid-state quantum dot architectures.
We show that a nonreciprocal coupling induces unidirectional electron flow in the resonant transport regime.
arXiv Detail & Related papers (2020-04-11T14:13:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.