Physics-Informed Neural Networks for an optimal counterdiabatic quantum
computation
- URL: http://arxiv.org/abs/2309.04434v2
- Date: Wed, 13 Sep 2023 07:32:35 GMT
- Title: Physics-Informed Neural Networks for an optimal counterdiabatic quantum
computation
- Authors: Antonio Ferrer-S\'anchez and Carlos Flores-Garrigos and Carlos
Hernani-Morales and Jos\'e J. Orqu\'in-Marqu\'es and Narendra N. Hegade and
Alejandro Gomez Cadavid and Iraitz Montalban and Enrique Solano and Yolanda
Vives-Gilabert and Jos\'e D. Mart\'in-Guerrero
- Abstract summary: We introduce a novel methodology that leverages the strength of Physics-Informed Neural Networks (PINNs) to address the counterdiabatic (CD) protocol in the optimization of quantum circuits comprised of systems with $N_Q$ qubits.
The main applications of this methodology have been the $mathrmH_2$ and $mathrmLiH$ molecules, represented by a 2-qubit and 4-qubit systems employing the STO-3G basis.
- Score: 32.73124984242397
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a novel methodology that leverages the strength of
Physics-Informed Neural Networks (PINNs) to address the counterdiabatic (CD)
protocol in the optimization of quantum circuits comprised of systems with
$N_{Q}$ qubits. The primary objective is to utilize physics-inspired deep
learning techniques to accurately solve the time evolution of the different
physical observables within the quantum system. To accomplish this objective,
we embed the necessary physical information into an underlying neural network
to effectively tackle the problem. In particular, we impose the hermiticity
condition on all physical observables and make use of the principle of least
action, guaranteeing the acquisition of the most appropriate counterdiabatic
terms based on the underlying physics. The proposed approach offers a
dependable alternative to address the CD driving problem, free from the
constraints typically encountered in previous methodologies relying on
classical numerical approximations. Our method provides a general framework to
obtain optimal results from the physical observables relevant to the problem,
including the external parameterization in time known as scheduling function,
the gauge potential or operator involving the non-adiabatic terms, as well as
the temporal evolution of the energy levels of the system, among others. The
main applications of this methodology have been the $\mathrm{H_{2}}$ and
$\mathrm{LiH}$ molecules, represented by a 2-qubit and 4-qubit systems
employing the STO-3G basis. The presented results demonstrate the successful
derivation of a desirable decomposition for the non-adiabatic terms, achieved
through a linear combination utilizing Pauli operators. This attribute confers
significant advantages to its practical implementation within quantum computing
algorithms.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Addressing the Non-perturbative Regime of the Quantum Anharmonic Oscillator by Physics-Informed Neural Networks [0.9374652839580183]
In quantum realm, such approach paves the way to a novel approach to solve the Schroedinger equation for non-integrable systems.
We investigate systems with real and imaginary frequency, laying the foundation for novel numerical methods to tackle problems emerging in quantum field theory.
arXiv Detail & Related papers (2024-05-22T08:34:52Z) - A Hybrid Quantum-Classical Physics-Informed Neural Network Architecture for Solving Quantum Optimal Control Problems [1.4811951486536687]
The study showcases an innovative approach to optimizing quantum state manipulations.
The proposed hybrid model effectively applies machine learning techniques to solve optimal control problems.
This is illustrated through the design and implementation of a hybrid PINN network to solve a quantum state transition problem.
arXiv Detail & Related papers (2024-04-23T13:22:22Z) - Scalable Imaginary Time Evolution with Neural Network Quantum States [0.0]
The representation of a quantum wave function as a neural network quantum state (NQS) provides a powerful variational ansatz for finding the ground states of many-body quantum systems.
We introduce an approach that bypasses the computation of the metric tensor and instead relies exclusively on first-order descent with Euclidean metric.
We make this method adaptive and stable by determining the optimal time step and keeping the target fixed until the energy of the NQS decreases.
arXiv Detail & Related papers (2023-07-28T12:26:43Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Physics-informed neural networks for quantum control [0.0]
We introduce a computational method for optimal quantum control problems via physics-informed neural networks (PINNs)
We apply our methodology to open quantum systems by efficiently solving the state-to-state transfer problem with high probabilities, short-time evolution, and using low-energy consumption controls.
arXiv Detail & Related papers (2022-06-13T16:17:22Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Low depth mechanisms for quantum optimization [0.25295633594332334]
We focus on developing a language and tools connected with kinetic energy on a graph for understanding the physical mechanisms of success and failure to guide algorithmic improvement.
This is connected to effects from wavefunction confinement, phase randomization, and shadow defects lurking in the objective far away from the ideal solution.
arXiv Detail & Related papers (2020-08-19T18:16:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.