Programmable adiabatic demagnetization for systems with trivial and topological excitations
- URL: http://arxiv.org/abs/2210.17256v5
- Date: Thu, 17 Oct 2024 08:39:57 GMT
- Title: Programmable adiabatic demagnetization for systems with trivial and topological excitations
- Authors: Anne Matthies, Mark Rudner, Achim Rosch, Erez Berg,
- Abstract summary: We propose a protocol to prepare a low-energy state of an arbitrary Hamiltonian on a quantum computer or quantum simulator.
The protocol is inspired by the adiabatic demagnetization technique, used to cool solid-state systems to extremely low temperatures.
- Score: 0.0
- License:
- Abstract: We propose a simple, robust protocol to prepare a low-energy state of an arbitrary Hamiltonian on a quantum computer or programmable quantum simulator. The protocol is inspired by the adiabatic demagnetization technique, used to cool solid-state systems to extremely low temperatures. A fraction of the qubits (or spins) is used to model a spin bath that is coupled to the system. By an adiabatic ramp down of a simulated Zeeman field acting on the bath spins, energy and entropy are extracted from the system. The bath spins are then measured and reset to the polarized state, and the process is repeated until convergence to a low-energy steady state is achieved. We demonstrate the protocol via application to the quantum Ising model. We study the protocol's performance in the presence of noise and show how the information from the measurement of the bath spins can be used to monitor the cooling process. The performance of the algorithm depends on the nature of the excitations of the system; systems with non-local (topological) excitations are more difficult to cool than those with local excitations. We explore the possible mitigation of this problem by trapping topological excitations.
Related papers
- Efficiently preparing chiral states via fermionic cooling on bosonic quantum hardware [0.0]
We propose an efficient protocol for preparing low energy states of arbitrary fermionic Hamiltonians on a noisy bosonic quantum simulator.
We show that certain topological phases, such as the chiral (non-Abelian) phase of the Kitaev honeycomb model can be prepared efficiently using our protocol.
arXiv Detail & Related papers (2024-09-03T18:00:02Z) - Demonstration of system-bath physics on gate-based quantum computer [0.5224038339798621]
We demonstrate algorithmic cooling on IBM-Q devices.
We are able to perform simulated cooling for global systems of up to three system spins and four auxiliary spins.
arXiv Detail & Related papers (2024-04-29T16:15:01Z) - Efficient Quantum Cooling Algorithm for Fermionic Systems [0.0]
We present a cooling algorithm for ground state preparation of fermionic Hamiltonians.
We derive suitable interaction Hamiltonians that originate from operators of the free theory.
We propose a spectroscopic scan to find the relevant eigenenergies of the system.
arXiv Detail & Related papers (2024-03-21T15:59:32Z) - Quantum Computation by Cooling [0.0]
We propose a specific Hamiltonian model for quantum computation based on adiabatic evolution.
We show that quantum computation based on this cooling procedure is equivalent in its computational power to the one based on quantum circuits.
arXiv Detail & Related papers (2024-03-04T06:26:07Z) - Gauged cooling of topological excitations and emergent fermions on
quantum simulators [0.0]
Simulated cooling is a robust method for preparing low-energy states of many-body Hamiltonians on quantum simulators.
We show how to efficiently cool the ferromagnetic phase of the quantum Ising model, whose excitations are domain walls.
We show that our protocol can prepare the ground states of the ferromagnetic and paramagnetic phases equally efficiently.
arXiv Detail & Related papers (2023-10-24T18:00:01Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Pulsed multireservoir engineering for a trapped ion with applications to
state synthesis and quantum Otto cycles [68.8204255655161]
Reservoir engineering is a remarkable task that takes dissipation and decoherence as tools rather than impediments.
We develop a collisional model to implement reservoir engineering for the one-dimensional harmonic motion of a trapped ion.
Having multiple internal levels, we show that multiple reservoirs can be engineered, allowing for more efficient synthesis of well-known non-classical states of motion.
arXiv Detail & Related papers (2021-11-26T08:32:39Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.