Gauged cooling of topological excitations and emergent fermions on
quantum simulators
- URL: http://arxiv.org/abs/2310.16082v1
- Date: Tue, 24 Oct 2023 18:00:01 GMT
- Title: Gauged cooling of topological excitations and emergent fermions on
quantum simulators
- Authors: Gilad Kishony, Mark S. Rudner, Achim Rosch, Erez Berg
- Abstract summary: Simulated cooling is a robust method for preparing low-energy states of many-body Hamiltonians on quantum simulators.
We show how to efficiently cool the ferromagnetic phase of the quantum Ising model, whose excitations are domain walls.
We show that our protocol can prepare the ground states of the ferromagnetic and paramagnetic phases equally efficiently.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulated cooling is a robust method for preparing low-energy states of
many-body Hamiltonians on near-term quantum simulators. In such schemes, a
subset of the simulator's spins (or qubits) are treated as a "bath," which
extracts energy and entropy from the system of interest. However, such
protocols are inefficient when applied to systems whose excitations are highly
non-local in terms of the microscopic degrees of freedom, such as topological
phases of matter; such excitations are difficult to extract by a local coupling
to a bath. We explore a route to overcome this obstacle by encoding of the
system's degrees of freedom into those of the quantum simulator in a non-local
manner. To illustrate the approach, we show how to efficiently cool the
ferromagnetic phase of the quantum Ising model, whose excitations are domain
walls, via a "gauged cooling" protocol in which the Ising spins are coupled to
a $Z_2$ gauge field that simultaneously acts as a reservoir for removing
excitations. We show that our protocol can prepare the ground states of the
ferromagnetic and paramagnetic phases equally efficiently. The gauged cooling
protocol naturally extends to (interacting) fermionic systems, where it is
equivalent to cooling by coupling to a fermionic bath via single-fermion
hopping.
Related papers
- Efficiently preparing chiral states via fermionic cooling on bosonic quantum hardware [0.0]
We propose an efficient protocol for preparing low energy states of arbitrary fermionic Hamiltonians on a noisy bosonic quantum simulator.
We show that certain topological phases, such as the chiral (non-Abelian) phase of the Kitaev honeycomb model can be prepared efficiently using our protocol.
arXiv Detail & Related papers (2024-09-03T18:00:02Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Unscrambling of single-particle wave functions in systems localized through disorder and monitoring [0.0]
We develop a process of finding a Slater determinant representation of free-fermion wave functions that accurately characterizes localized particles.
Our results unlock the potential of utilizing single-particle wave functions to gain valuable insights into the localization transition properties in systems such as monitored free fermions and disordered models.
arXiv Detail & Related papers (2024-03-15T23:16:44Z) - Quantum geometry and bounds on dissipation in slowly driven quantum
systems [0.0]
We show that heat production in slowly driven quantum systems is linked to the topological structure of the driving protocol.
Our results bridge topological phenomena and energy dissipation in slowly driven quantum systems.
arXiv Detail & Related papers (2023-06-29T18:00:03Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Programmable adiabatic demagnetization for systems with trivial and topological excitations [0.0]
We propose a protocol to prepare a low-energy state of an arbitrary Hamiltonian on a quantum computer or quantum simulator.
The protocol is inspired by the adiabatic demagnetization technique, used to cool solid-state systems to extremely low temperatures.
arXiv Detail & Related papers (2022-10-31T12:27:04Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Ground-State Cooling of Levitated Magnets in Low-Frequency Traps [1.6114012813668934]
We present a ground-state cooling scheme for mesoscopic magnetic particles levitated in low-frequency traps.
Our method makes use of a binary sensor and suitably shaped pulses to perform weak, adaptive measurements on the position of the magnet.
Our results pave the way for ground-state cooling of micron-scale particles.
arXiv Detail & Related papers (2021-02-05T18:47:04Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.