Demonstration of system-bath physics on gate-based quantum computer
- URL: http://arxiv.org/abs/2404.18828v2
- Date: Tue, 30 Apr 2024 10:02:49 GMT
- Title: Demonstration of system-bath physics on gate-based quantum computer
- Authors: Pascal Stadler, Matteo Lodi, Andisheh Khedri, Rolando Reiner, Kirsten Bark, Nicolas Vogt, Michael Marthaler, Juha Leppäkangas,
- Abstract summary: We demonstrate algorithmic cooling on IBM-Q devices.
We are able to perform simulated cooling for global systems of up to three system spins and four auxiliary spins.
- Score: 0.5224038339798621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate algorithmic cooling on IBM-Q devices. We utilize inherent qubit noise to simulate the equilibration of an interacting spin system towards its ground state, when coupled to a dissipative auxiliary-spin bath. The steady-state correlations in the system are defined by the system Hamiltonian and are stable as long as the algorithm can be executed. In particular, we demonstrate the relaxation of system spins to ferromagnetic and antiferromagnetic ordering, controlled by the definition of the Hamiltonian. We are able to perform simulated cooling for global systems of up to three system spins and four auxiliary spins.
Related papers
- Stability of Quantum Systems beyond Canonical Typicality [9.632520418947305]
We analyze the statistical distribution of a quantum system coupled strongly with a heat bath.
The stability of system distribution is largely affected by the system--bath interaction strength.
arXiv Detail & Related papers (2024-07-22T02:59:04Z) - Observation of multiple steady states with engineered dissipation [19.94001756170236]
We introduce engineered noise into a one-dimensional ten-qubit superconducting quantum processor to emulate a generic many-body open quantum system.
We find that the information saved in the initial state maintains in the steady state driven by the continuous dissipation on a five-qubit chain.
arXiv Detail & Related papers (2023-08-25T08:06:44Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Programmable adiabatic demagnetization for systems with trivial and topological excitations [0.0]
We propose a protocol to prepare a low-energy state of an arbitrary Hamiltonian on a quantum computer or quantum simulator.
The protocol is inspired by the adiabatic demagnetization technique, used to cool solid-state systems to extremely low temperatures.
arXiv Detail & Related papers (2022-10-31T12:27:04Z) - Digital Quantum Simulation of the Spin-Boson Model under Open System
Dynamics [1.5727276506140881]
We study how to simulate open quantum dynamics in a digital quantum computer.
We show that the key aspect is to simulate the unitary portion of the dynamics, while the dissipative part can lead to a more noise-resistant simulation.
arXiv Detail & Related papers (2022-10-28T06:03:35Z) - Simulating spin dynamics with quantum computers [0.0]
IBM quantum computers are used to simulate the dynamics of small systems of interacting quantum spins.
We compute the exact time evolution at arbitrary times and measure spin expectation values and energy.
arXiv Detail & Related papers (2022-06-29T16:46:04Z) - Inferring Markovian quantum master equations of few-body observables in
interacting spin chains [18.569079917372736]
We learn the generator of the dynamics of a subsystem of a many-body system.
We exploit this to make predictions on the stationary state of the subsystem dynamics.
arXiv Detail & Related papers (2022-01-27T15:53:42Z) - Quantum manipulation of a two-level mechanical system [19.444636864515726]
We consider a nonlinearly coupled electromechanical system, and develop a quantitative theory for two-phonon cooling.
In the presence of two-phonon cooling, the mechanical Hilbert space is effectively reduced to its ground and first excited states.
We propose a scheme for performing arbitrary Bloch sphere rotations, and derive the fidelity in the specific case of a $pi$-pulse.
arXiv Detail & Related papers (2021-01-05T19:34:44Z) - Expectation Synchronization Synthesis in Non-Markovian Open Quantum
Systems [15.285806487845036]
We investigate the problem of engineering synchronization in non-Markovian quantum systems.
For two homogenous subsystems, synchronization can always be synthesized without designing direct Hamiltonian coupling.
System parameters are explicitly designed to achieve quantum synchronization.
arXiv Detail & Related papers (2021-01-04T08:46:25Z) - Stoquasticity in circuit QED [78.980148137396]
We show that scalable sign-problem free path integral Monte Carlo simulations can typically be performed for such systems.
We corroborate the recent finding that an effective, non-stoquastic qubit Hamiltonian can emerge in a system of capacitively coupled flux qubits.
arXiv Detail & Related papers (2020-11-02T16:41:28Z) - Quantum Brownian Motion for Magnets [0.0]
We derive a general spin operator equation of motion that describes three-dimensional precession and damping.
The results provide a powerful framework to explore general three-dimensional dissipation in quantum thermodynamics.
arXiv Detail & Related papers (2020-09-01T17:44:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.