The extended star graph as a light-harvesting-complex prototype:
excitonic absorption speedup by peripheral energy defect tuning
- URL: http://arxiv.org/abs/2210.17524v1
- Date: Fri, 14 Oct 2022 21:21:07 GMT
- Title: The extended star graph as a light-harvesting-complex prototype:
excitonic absorption speedup by peripheral energy defect tuning
- Authors: Saad Yalouz and Vincent Pouthier
- Abstract summary: We study the quantum dynamics of a photo-excitation uniformly distributed at the periphery of an extended star network.
We show that the origin of this speedup takes place in the hybridization of two upper-band excitonic eigenstates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the quantum dynamics of a photo-excitation uniformly distributed at
the periphery of an extended star network (with $N_B$ branches of length
$L_B$). More specifically, we address here the question of the energy
absorption at the core of the network and how this process can be improved (or
not) by the inclusion of peripheral defects with a tunable energy amplitude
$\Delta$. Our numerical simulations reveal the existence of optimal value of
energy defect $\Delta^*$ which depends on the network architecture. Around this
value, the absorption process presents a strong speedup (i.e. reduction of the
absorption time) provided that $L_B \leq L_B^*$ with $L_B^* \approx
12.5/\ln(N_B) $. Analytical/numerical developments are then conducted to
interpret this feature. We show that the origin of this speedup takes place in
the hybridization of two upper-band excitonic eigenstates. This hybridization
is important when $L_B \leq L_B^*$ and vanishes almost totally when $L_B >
L_B^*$. These structural rules we draw here could represent a potential guide
for the practical design of molecular nano-network dedicated to the realisation
of efficient photo-excitation absorption.
Related papers
- Unifying Floquet theory of longitudinal and dispersive readout [33.7054351451505]
We devise a Floquet theory of longitudinal and dispersive readout in circuit QED.
We apply them to superconducting and spin-hybrid cQED systems.
arXiv Detail & Related papers (2024-07-03T18:00:47Z) - Hamiltonian Mechanics of Feature Learning: Bottleneck Structure in Leaky ResNets [58.460298576330835]
We study Leaky ResNets, which interpolate between ResNets ($tildeLtoinfty$) and Fully-Connected nets ($tildeLtoinfty$)
In the infinite depth limit, we study'representation geodesics' $A_p$: continuous paths in representation space (similar to NeuralODEs)
We leverage this intuition to explain the emergence of a bottleneck structure, as observed in previous work.
arXiv Detail & Related papers (2024-05-27T18:15:05Z) - Spatiotemporal Quenches in Long-Range Hamiltonians [0.0]
We study the fate of Stemporal quenches in models with a fixed velocity $v$ for the propagation of the quench front.
We show that optimal cooling is achieved when the front velocity $v$ approaches $c$, the effective speed of excitations in the critical model.
arXiv Detail & Related papers (2022-12-14T20:40:24Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Decoherence of V$_{\rm B}^{-}$ spin defects in monoisotopic hexagonal
boron nitride [0.0]
Spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of flexible two-dimensional quantum sensing platforms.
Here we rely on hBN crystals isotopically enriched with either $10$B or $11$B to investigate the isotope-dependent properties of a spin defect featuring a broadband photoluminescence signal in the near infrared.
arXiv Detail & Related papers (2021-12-19T15:51:07Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
We present a neural network autoencoder approach for extracting a telluric transmission spectrum from a large set of high-precision observed solar spectra from the HARPS-N radial velocity spectrograph.
arXiv Detail & Related papers (2021-11-17T12:54:48Z) - Rovibrational structure of the Ytterbium monohydroxide molecule and the
$\mathcal{P}$,$\mathcal{T}$-violation searches [68.8204255655161]
The energy gap between levels of opposite parity, $l$-doubling, is of a great interest.
The influence of the bending and stretching modes on the sensitivities to the $mathcalP$,$mathcalT$-violation requires a thorough investigation.
arXiv Detail & Related papers (2021-08-25T20:12:31Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z) - Weakly invasive metrology: quantum advantage and physical
implementations [0.0]
We show that arbitrarily intense coherent states can obtain information at a rate that scales at most linearly with $N_rm abs$ and $T$.
We discuss an implementation in cavity QED, where Fock states are both prepared and measured by coupling atomic ensembles to the cavities.
arXiv Detail & Related papers (2020-06-22T10:14:36Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.