論文の概要: Adversarial Policies Beat Superhuman Go AIs
- arxiv url: http://arxiv.org/abs/2211.00241v4
- Date: Thu, 13 Jul 2023 06:37:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-14 17:34:30.694974
- Title: Adversarial Policies Beat Superhuman Go AIs
- Title(参考訳): 逆境政策が超人go aisを破る
- Authors: Tony T. Wang, Adam Gleave, Tom Tseng, Kellin Pelrine, Nora Belrose,
Joseph Miller, Michael D. Dennis, Yawen Duan, Viktor Pogrebniak, Sergey
Levine, Stuart Russell
- Abstract要約: 我々は,現在最先端の囲碁AIシステムであるKataGoを,敵の政策を訓練することによって攻撃する。
敵は囲碁を上手に弾くことで勝てない。かたごを騙して真剣な失敗を犯す。
我々の結果は、超人的AIシステムでさえ、驚くほどの障害モードを持っていることを実証している。
- 参考スコア(独自算出の注目度): 54.15639517188804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We attack the state-of-the-art Go-playing AI system KataGo by training
adversarial policies against it, achieving a >97% win rate against KataGo
running at superhuman settings. Our adversaries do not win by playing Go well.
Instead, they trick KataGo into making serious blunders. Our attack transfers
zero-shot to other superhuman Go-playing AIs, and is comprehensible to the
extent that human experts can implement it without algorithmic assistance to
consistently beat superhuman AIs. The core vulnerability uncovered by our
attack persists even in KataGo agents adversarially trained to defend against
our attack. Our results demonstrate that even superhuman AI systems may harbor
surprising failure modes. Example games are available https://goattack.far.ai/.
- Abstract(参考訳): 我々は,現在最先端の囲碁AIシステムであるKataGoを,敵の政策を訓練することで攻撃し,超人的環境でのKataGoに対する97%の勝利率を達成した。
私たちの敵はうまくプレーすることで勝てない。
代わりに、KataGoを騙して真剣な失敗を犯す。
我々の攻撃はゼロショットを他のスーパーヒューマンgoプレイングaiに転送し、スーパーヒューマンaiを一貫して打ち負かすアルゴリズムの助けなしに、人間の専門家がそれを実装できる程度に理解できます。
攻撃によって発見された中核的な脆弱性は、攻撃から守るために敵に訓練されたKataGoエージェントでも存続する。
我々の結果は、超人的AIシステムでさえ、驚くほどの障害モードを持っていることを示している。
サンプルゲームはhttps://goattack.far.ai/。
関連論文リスト
- Can Go AIs be adversarially robust? [4.466856575755327]
自然対策を加えることで、Goの堅牢性が達成できるかどうかを考察する。
これらの防御策のいくつかは、以前発見された攻撃から守られているが、新しく訓練された敵には耐えられない。
我々の研究結果は、堅牢なAIシステムの構築は、非常に超人的なシステムであっても、最も難易度の高い設定で難しいことを示唆している。
論文 参考訳(メタデータ) (2024-06-18T17:57:49Z) - DanZero+: Dominating the GuanDan Game through Reinforcement Learning [95.90682269990705]
我々は、GuanDanという、非常に複雑で人気のあるカードゲームのためのAIプログラムを開発した。
私たちはまず、DanZeroという名のAIプログラムをこのゲームのために提案しました。
AIの能力をさらに強化するために、政策に基づく強化学習アルゴリズムをGuanDanに適用する。
論文 参考訳(メタデータ) (2023-12-05T08:07:32Z) - Are AlphaZero-like Agents Robust to Adversarial Perturbations? [73.13944217915089]
AlphaZero(AZ)は、ニューラルネットワークベースのGo AIが人間のパフォーマンスを大きく上回ることを示した。
私たちは、Go AIが驚くほど間違った行動を起こさせる可能性のある、敵対的な状態が存在するかどうか尋ねる。
我々は、Go AIに対する最初の敵攻撃を開発し、探索空間を戦略的に減らし、効率よく敵の状態を探索する。
論文 参考訳(メタデータ) (2022-11-07T18:43:25Z) - DanZero: Mastering GuanDan Game with Reinforcement Learning [121.93690719186412]
カードゲームAIは、人工知能の研究において常にホットな話題となっている。
本稿では,より複雑なカードゲームであるGuanDanのためのAIプログラムの開発に専念する。
そこで我々は,強化学習技術を用いたGuanDanのためのAIプログラムDanZeroを提案する。
論文 参考訳(メタデータ) (2022-10-31T06:29:08Z) - AI in Games: Techniques, Challenges and Opportunities [40.86375378643978]
Libratus、OpenAI Five、AlphaStarといった様々なゲームAIシステムが開発され、プロの人間プレイヤーに勝っている。
本稿では,最近成功したゲームAI,ボードゲームAI,カードゲームAI,ファーストパーソンシューティングゲームAI,リアルタイム戦略ゲームAIについて調査する。
論文 参考訳(メタデータ) (2021-11-15T09:35:53Z) - Instructive artificial intelligence (AI) for human training, assistance,
and explainability [0.24629531282150877]
ニューラルネットワークが従来のAI(XAI)の代替手段として人間の研修生にどのように教えるかを示す。
AIは人間の行動を調べ、より良いパフォーマンスをもたらす人間の戦略のバリエーションを計算する。
結果は、ハナビにおける人間の意思決定と人間-AIチームを改善するAIインストラクションの能力について提示される。
論文 参考訳(メタデータ) (2021-11-02T16:46:46Z) - The Threat of Offensive AI to Organizations [52.011307264694665]
この調査は、組織に対する攻撃的なAIの脅威を調査する。
まず、AIが敵の方法、戦略、目標、および全体的な攻撃モデルをどのように変えるかについて議論する。
そして、文献レビューを通じて、敵が攻撃を強化するために使用できる33の攻撃的AI能力を特定します。
論文 参考訳(メタデータ) (2021-06-30T01:03:28Z) - Suphx: Mastering Mahjong with Deep Reinforcement Learning [114.68233321904623]
我々は、新たに導入されたいくつかの技術を用いた深層強化学習に基づいて、Suphxという名のマフジョンのためのAIを設計する。
Suphxは、安定したランクの点で、ほとんどのトップの人間プレイヤーよりも強いパフォーマンスを示している。
コンピュータプログラムがマヒョンで最上位の人間プレイヤーを上回るのは、これが初めてである。
論文 参考訳(メタデータ) (2020-03-30T16:18:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。