Ground state degeneracy on torus in a family of $\mathbb{Z}_N$ toric
code
- URL: http://arxiv.org/abs/2211.00299v3
- Date: Sun, 16 Apr 2023 23:14:59 GMT
- Title: Ground state degeneracy on torus in a family of $\mathbb{Z}_N$ toric
code
- Authors: Haruki Watanabe, Meng Cheng, Yohei Fuji
- Abstract summary: Topologically ordered phases in $2+1$ dimensions are characterized by three mutually-related features.
The most remarkable feature of the topologically ordered phases is that the ground state may be unique.
We argue that this behavior originates from the nontrivial action of translations permuting anyon species.
- Score: 2.7286395031146062
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topologically ordered phases in $2+1$ dimensions are generally characterized
by three mutually-related features: fractionalized (anyonic) excitations,
topological entanglement entropy, and robust ground state degeneracy that does
not require symmetry protection or spontaneous symmetry breaking. Such
degeneracy is known as topological degeneracy and usually can be seen under the
periodic boundary condition regardless of the choice of the system size $L_1$
and $L_2$ in each direction. In this work we introduce a family of extensions
of the Kitaev toric code to $N$ level spins ($N\geq2$). The model realizes
topologically ordered phases or symmetry-protected topological phases depending
on parameters in the model. The most remarkable feature of the topologically
ordered phases is that the ground state may be unique, depending on $L_1$ and
$L_2$, despite that the translation symmetry of the model remains unbroken.
Nonetheless, the topological entanglement entropy takes the nontrivial value.
We argue that this behavior originates from the nontrivial action of
translations permuting anyon species.
Related papers
- Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Symmetry-enriched topological order from partially gauging
symmetry-protected topologically ordered states assisted by measurements [1.2809525640002364]
It is known that for a given symmetry group $G$, the 2D SPT phase protected by $G$ is dual to the 2D topological phase exemplified by the twisted quantum double model $Domega(G)$ via gauging the global symmetry $G$.
Here, we review the general approach to gauging a $G$-SPT starting from a fixed-point ground-state wave function and applying a $N$-step gauging procedure.
We provide an in-depth analysis of the intermediate states emerging during the N-step gauging and provide tools to measure and identify the emerging symmetry-
arXiv Detail & Related papers (2023-05-16T18:40:56Z) - Detecting bulk and edge exceptional points in non-Hermitian systems
through generalized Petermann factors [7.371841894852217]
Non-orthogonality in non-Hermitian quantum systems gives rise to tremendous exotic quantum phenomena.
We introduce an interesting quantity (denoted as $eta$) as a new variant of the Petermann factor to measure non-unitarity.
arXiv Detail & Related papers (2022-08-31T16:24:03Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Non-zero momentum requires long-range entanglement [6.018940870331878]
We show that a quantum state in a lattice spin (boson) system must be long-range entangled if it has non-zero lattice momentum.
The statement can also be generalized to fermion systems.
arXiv Detail & Related papers (2021-12-13T19:00:04Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Classification of (2+1)D invertible fermionic topological phases with
symmetry [2.74065703122014]
We classify invertible fermionic topological phases of interacting fermions with symmetry in two spatial dimensions for general fermionic symmetry groups $G_f$.
Our results also generalize and provide a different approach to the recent classification of fermionic symmetry-protected topological phases by Wang and Gu.
arXiv Detail & Related papers (2021-09-22T21:02:07Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.