Pi theorem formulation of flood mapping
- URL: http://arxiv.org/abs/2211.00636v3
- Date: Sun, 10 Nov 2024 23:03:45 GMT
- Title: Pi theorem formulation of flood mapping
- Authors: Mark S. Bartlett, Jared Van Blitterswyk, Martha Farella, Jinshu Li, Curtis Smith, Anthony J. Parolari, Lalitha Krishnamoorthy, Assaad Mrad,
- Abstract summary: We propose a framework to improve machine learning (ML) model generalization based on dimensionless, multi-scale features.
Dimensionless features outperformed dimensional features, with some of the largest gains occurring when the model was trained in one region and tested in another.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rapid delineation of flash flood extents is critical to mobilize emergency resources and to manage evacuations, thereby saving lives and property. Machine learning (ML) approaches enable rapid flood delineation with reduced computational demand compared to conventional high-resolution, 2D flood models. However, existing ML approaches are limited by a lack of generalization to never-before-seen conditions. Here, we propose a framework to improve ML model generalization based on dimensionless, multi-scale features that capture the similarity of the flooding process across regions. The dimensionless features are constrained with the Buckingham $\Pi$ theorem and used with a logistic regression model for a probabilistic determination of flood risk. The features were calculated at different scales by varying accumulation thresholds for stream delineation. The modeled flood maps compared well with the results of 2D hydraulic models that are the basis of the Federal Emergency Management Agency (FEMA) flood hazard maps. Dimensionless features outperformed dimensional features, with some of the largest gains (in the AUC) occurring when the model was trained in one region and tested in another. Dimensionless and multi-scale features in ML flood modeling have the potential to improve generalization, enabling mapping in unmapped areas and across a broader spectrum of landscapes, climates, and events.
Related papers
- Bayesian Modeling of Zero-Shot Classifications for Urban Flood Detection [9.264147242217364]
Street scene datasets offer a promising means of detecting urban objects and incidents like street flooding.
A major challenge in using these datasets is their lack of reliable labels.
Here, we propose BayFlood, a two-stage approach which circumvents this difficulty.
arXiv Detail & Related papers (2025-03-18T21:53:37Z) - Learn from Downstream and Be Yourself in Multimodal Large Language Model Fine-Tuning [104.27224674122313]
Fine-tuning MLLM has become a common practice to improve performance on specific downstream tasks.
To balance the trade-off between generalization and specialization, we propose measuring the parameter importance for both pre-trained and fine-tuning distributions.
arXiv Detail & Related papers (2024-11-17T01:16:37Z) - Deep Vision-Based Framework for Coastal Flood Prediction Under Climate Change Impacts and Shoreline Adaptations [0.3413711585591077]
We present a systematic framework for training high-fidelity Deep Vision-based coastal flood prediction models in low-data settings.
We also introduce a deep CNN architecture tailored specifically to the coastal flood prediction problem at hand.
The performance of the developed DL models is validated against commonly adopted geostatistical regression methods.
arXiv Detail & Related papers (2024-06-06T19:54:34Z) - Large-scale flood modeling and forecasting with FloodCast [22.09906304112966]
We build a fast, stable, accurate, resolution-invariant, and geometry-adaptative flood modeling and forecasting framework.
The framework comprises two main modules: multi-satellite observation and hydrodynamic modeling.
In the hydrodynamic modeling module, a geometry-adaptive physics-informed neural solver (GeoPINS) is introduced.
Building upon GeoPINS, we propose a sequence-to-sequence GeoPINS model to handle long-term temporal series and extensive spatial domains in large-scale flood modeling.
arXiv Detail & Related papers (2024-03-18T20:18:32Z) - GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image [94.56927147492738]
We introduce GeoWizard, a new generative foundation model designed for estimating geometric attributes from single images.
We show that leveraging diffusion priors can markedly improve generalization, detail preservation, and efficiency in resource usage.
We propose a simple yet effective strategy to segregate the complex data distribution of various scenes into distinct sub-distributions.
arXiv Detail & Related papers (2024-03-18T17:50:41Z) - MaxFloodCast: Ensemble Machine Learning Model for Predicting Peak
Inundation Depth And Decoding Influencing Features [0.8497188292342053]
This study demonstrates a proposed machine learning model, MaxFloodCast, trained on physics-based hydrodynamic simulations in Harris County.
MaxFloodCast offers efficient and interpretable flood inundation depth predictions.
arXiv Detail & Related papers (2023-08-11T16:58:57Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
Flood inundation forecast provides critical information for emergency planning before and during flood events.
High-resolution hydrodynamic modeling has become more accessible in recent years, however, predicting flood extents at the street and building levels in real-time is still computationally demanding.
We present a hybrid process-based and data-driven machine learning (ML) approach for flood extent and inundation depth prediction.
arXiv Detail & Related papers (2023-07-29T22:49:50Z) - A comparison of machine learning surrogate models of street-scale
flooding in Norfolk, Virginia [0.0]
Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides.
High-fidelity, physics-based simulations provide accurate predictions of urban pluvial flooding, but their computational complexity renders them unsuitable for real-time applications.
This study compares the performance of a surrogate model based on a random forest algorithm with two deep learning models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
arXiv Detail & Related papers (2023-07-26T13:24:01Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Flood forecasting with machine learning models in an operational
framework [0.0]
The operational flood forecasting system by Google was developed to provide accurate real-time flood warnings to agencies and the public.
The forecasting system consists of four subsystems: data validation, stage forecasting, inundation modeling, and alert distribution.
During the 2021 monsoon season, the flood warning system was operational in India and Bangladesh, covering flood-prone regions around rivers with a total area of 287,000 km2, home to more than 350M people.
arXiv Detail & Related papers (2021-11-04T11:58:31Z) - Shaping Deep Feature Space towards Gaussian Mixture for Visual
Classification [74.48695037007306]
We propose a Gaussian mixture (GM) loss function for deep neural networks for visual classification.
With a classification margin and a likelihood regularization, the GM loss facilitates both high classification performance and accurate modeling of the feature distribution.
The proposed model can be implemented easily and efficiently without using extra trainable parameters.
arXiv Detail & Related papers (2020-11-18T03:32:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.