論文の概要: Monte Carlo Tree Descent for Black-Box Optimization
- arxiv url: http://arxiv.org/abs/2211.00778v1
- Date: Tue, 1 Nov 2022 22:45:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 12:26:51.256399
- Title: Monte Carlo Tree Descent for Black-Box Optimization
- Title(参考訳): ブラックボックス最適化のためのモンテカルロ木降下
- Authors: Yaoguang Zhai, Sicun Gao
- Abstract要約: 我々は、より高速な最適化のためにサンプルベース降下をさらに統合する方法を研究する。
我々は,モンテカルロ探索木の拡張手法を,頂点における新しい降下法を用いて設計する。
提案アルゴリズムは,多くの挑戦的ベンチマーク問題において,最先端の手法より優れていることを示す。
- 参考スコア(独自算出の注目度): 10.698553177585973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The key to Black-Box Optimization is to efficiently search through input
regions with potentially widely-varying numerical properties, to achieve
low-regret descent and fast progress toward the optima. Monte Carlo Tree Search
(MCTS) methods have recently been introduced to improve Bayesian optimization
by computing better partitioning of the search space that balances exploration
and exploitation. Extending this promising framework, we study how to further
integrate sample-based descent for faster optimization. We design novel ways of
expanding Monte Carlo search trees, with new descent methods at vertices that
incorporate stochastic search and Gaussian Processes. We propose the
corresponding rules for balancing progress and uncertainty, branch selection,
tree expansion, and backpropagation. The designed search process puts more
emphasis on sampling for faster descent and uses localized Gaussian Processes
as auxiliary metrics for both exploitation and exploration. We show empirically
that the proposed algorithms can outperform state-of-the-art methods on many
challenging benchmark problems.
- Abstract(参考訳): Black-Box Optimizationの鍵となるのは、潜在的に幅広い数値特性を持つ入力領域を効率的に探索し、低相対降下と最適化への高速な前進を実現することである。
Monte Carlo Tree Search (MCTS)法が最近導入され、探索とエクスプロイトのバランスをとる検索空間の分割性を改善することでベイズ最適化の改善が図られている。
この有望なフレームワークを拡張し、より高速な最適化のためにサンプルベース降下をさらに統合する方法を研究する。
我々は,確率的探索とガウス過程を含む頂点における新しい降下法を用いて,モンテカルロ探索木を拡張する新しい方法をデザインする。
本稿では,進捗と不確実性,分岐選択,木展開,バックプロパゲーションのバランスをとるための対応するルールを提案する。
設計された検索プロセスは、より高速な降下のためのサンプリングに重点を置いており、ローカライズされたガウス過程を搾取と探索の両方の補助指標として使っている。
提案アルゴリズムは,多くの挑戦的ベンチマーク問題において,最先端の手法より優れていることを示す。
関連論文リスト
- Optimized Monte Carlo Tree Search for Enhanced Decision Making in the FrozenLake Environment [0.0]
Monte Carlo Tree Search (MCTS) は複雑な意思決定問題を解決する強力なアルゴリズムである。
本稿では,古典的強化学習課題であるFrozenLake環境に適用したMCTS実装を提案する。
論文 参考訳(メタデータ) (2024-09-25T05:04:53Z) - LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
本研究では,動的ノード選択とノードレベルの探索予算を備えた新しいガイド付き木探索アルゴリズムを提案する。
GSM8KおよびTabMWPデータセットを用いて行った実験により,本手法はベースライン法に比べて計算コストが大幅に低いことを示した。
論文 参考訳(メタデータ) (2024-06-29T05:14:04Z) - Improving sample efficiency of high dimensional Bayesian optimization
with MCMC [7.241485121318798]
本稿ではマルコフ・チェイン・モンテカルロに基づく新しい手法を提案する。
提案アルゴリズムのMetropolis-HastingsとLangevin Dynamicsの両バージョンは、高次元逐次最適化および強化学習ベンチマークにおいて最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-01-05T05:56:42Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
興味のあるタスクを直接検索できる,スケーラブルで汎用的なフレームワークを初めて提示する。
基礎となる数学表現の自然木構造に着想を得て、空間を超木に再配置する。
我々は,モンテカルロ法を木探索に適用し,レジェクションサンプリングと等価形状検出を備える。
論文 参考訳(メタデータ) (2022-09-27T17:51:31Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Bayesian Optimized Monte Carlo Planning [34.8909579244631]
モンテカルロ木探索は、行動空間からサンプリングし、ポリシー探索木を構築することにより、拡張性の向上を試みる。
ベイズ最適化に基づく効率的な行動サンプリング法を提案する。
提案手法はBayesian Optimized Monte Carlo Planningと呼ばれる新しいオンライン木探索アルゴリズムに実装されている。
論文 参考訳(メタデータ) (2020-10-07T18:29:27Z) - Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search
Spaces [63.22864716473051]
本稿では,反復により探索空間を拡大(およびシフト)する新しいBOアルゴリズムを提案する。
理論的には、どちらのアルゴリズムにおいても、累積的後悔は線形以下の速度で増大する。
論文 参考訳(メタデータ) (2020-09-05T14:24:40Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z) - Incorporating Expert Prior in Bayesian Optimisation via Space Warping [54.412024556499254]
大きな探索空間では、アルゴリズムは関数の最適値に達する前に、いくつかの低関数値領域を通過する。
このコールドスタートフェーズの1つのアプローチは、最適化を加速できる事前知識を使用することである。
本稿では,関数の事前分布を通じて,関数の最適性に関する事前知識を示す。
先行分布は、探索空間を最適関数の高確率領域の周りに拡張し、最適関数の低確率領域の周りに縮小するようにワープする。
論文 参考訳(メタデータ) (2020-03-27T06:18:49Z) - Bayesian optimization for backpropagation in Monte-Carlo tree search [1.52292571922932]
バックプロパゲーション戦略を改善するための従来の試みを一般化した,Softmax MCTS と Monotone MCTS の2つの手法を提案する。
提案手法が従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-25T14:33:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。