論文の概要: A Two Step Approach to Weighted Bipartite Link Recommendations
- arxiv url: http://arxiv.org/abs/2211.01153v1
- Date: Sat, 29 Oct 2022 04:38:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 14:58:14.660794
- Title: A Two Step Approach to Weighted Bipartite Link Recommendations
- Title(参考訳): 重み付き二成分リンク推薦に対する二段階アプローチ
- Authors: Nathan Ma
- Abstract要約: 本稿では,コモンエッジ間の周波数と類似性を考慮に入れた2ステップのアルゴリズムを提案する。
本研究では,この手法をエピニオンとモレンスのデータソースから収集した2部データを用いて検証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many real world person-person or person-product relationships can be modeled
graphically. More specifically, bipartite graphs can be especially useful when
modeling scenarios that involve two disjoint groups. As a result, many existing
papers have utilized bipartite graphs for the classical link recommendation
problem. In this paper, using the principle of bipartite graphs, we present
another approach to this problem with a two step algorithm that takes into
account frequency and similarity between common edges to make recommendations.
We test this approach with bipartite data gathered from the Epinions and
Movielens data sources, and find it to perform with roughly 14 percent error,
which improves upon baseline results. This is a promising result, and can be
refined to generate even more accurate recommendations.
- Abstract(参考訳): 多くの現実世界の人/人/製品間の関係はグラフィカルにモデル化できる。
より具体的には、2つの非結合群を含むシナリオをモデル化する場合、二部グラフは特に有用である。
その結果,従来のリンクレコメンデーション問題に対して2部グラフを用いた論文が多数存在する。
本稿では,二成分グラフの原理を用いて,共通辺間の頻度と類似性を考慮した2段階のアルゴリズムを用いて,この問題に対する別のアプローチを提案する。
このアプローチは、EpinionsとMovielensのデータソースから収集した2部データを用いてテストし、約14%の誤差で実行し、ベースライン結果を改善する。
これは有望な結果であり、さらに正確なレコメンデーションを生成するために洗練することができる。
関連論文リスト
- Bilateral Unsymmetrical Graph Contrastive Learning for Recommendation [12.945782054710113]
両面非対称グラフコントラスト学習(BusGCL)と呼ばれる推薦タスクのための新しいフレームワークを提案する。
BusGCLは、スライスされたユーザとアイテムグラフのユーザ-itemノード関係密度の両側非対称性を、両スライスしたコントラストトレーニングより優れていると考えている。
2つの公開データセットに関する総合的な実験は、様々なレコメンデーション手法と比較して、BusGCLの優位性を証明している。
論文 参考訳(メタデータ) (2024-03-22T09:58:33Z) - One-step Bipartite Graph Cut: A Normalized Formulation and Its
Application to Scalable Subspace Clustering [56.81492360414741]
両部グラフの1ステップ正規化カットを、特に線形時間複雑性で実施する方法を示す。
本稿では、まず、正規化制約付き一段階二分グラフカット基準を特徴付けるとともに、そのトレース問題に対する等価性を理論的に証明する。
このカット基準を、適応アンカー学習、二部グラフ学習、一段階正規化二部グラフ分割を同時にモデル化するスケーラブルなサブスペースクラスタリングアプローチに拡張する。
論文 参考訳(メタデータ) (2023-05-12T11:27:20Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
従来見過ごされていた現象を調査し、多くの場合、元のグラフに対して密に連結された補グラフを見つけることができる。
より密度の高いグラフは、選択的で有意義な知識を伝達するための自然なブリッジを提供する元のグラフとノードを共有することができる。
この設定をグラフインターセクション誘導トランスファーラーニング(GITL)とみなし,eコマースや学術共同オーサシップ予測の実践的応用に動機づけられた。
論文 参考訳(メタデータ) (2023-02-27T22:56:06Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
自己教師付きグラフ類似性学習のためのコントラストグラフマッチングネットワーク(CGMN)を提案する。
我々は,効率的なノード表現学習のために,クロスビューインタラクションとクロスグラフインタラクションという2つの戦略を用いる。
我々はノード表現をグラフ類似性計算のためのプール演算によりグラフレベル表現に変換する。
論文 参考訳(メタデータ) (2022-05-30T13:20:26Z) - Collaborative likelihood-ratio estimation over graphs [55.98760097296213]
グラフに基づく相対的制約のない最小二乗重要度フィッティング(GRULSIF)
我々はこの考え方を、グラフベースの相対的非制約最小二乗重要度フィッティング(GRULSIF)と呼ばれる具体的な非パラメトリック手法で開発する。
我々は、ノード当たりの観測回数、グラフのサイズ、およびグラフ構造がタスク間の類似性をどの程度正確にエンコードしているかといった変数が果たす役割を強調する、協調的なアプローチの収束率を導出する。
論文 参考訳(メタデータ) (2022-05-28T15:37:03Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
グラフ学習に基づく新しい教師なしマルチビュー特徴選択モデルを提案する。
1) 特徴選択過程において, 異なる視点で共有されたコンセンサス類似度グラフが学習される。
各種データセットを用いた実験により,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-11T03:25:25Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
フレーム間のデータアソシエーションは、Multiple Object Tracking(MOT)タスクの中核にある。
既存の手法は、主にトラックレットとフレーム内検出の間のコンテキスト情報を無視する。
そこで本研究では,学習可能なグラフマッチング手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T08:58:45Z) - Partial Gromov-Wasserstein Learning for Partial Graph Matching [28.47269200800775]
部分的なGromov-Wasserstein学習フレームワークは2つのグラフを部分的にマッチングするために提案される。
私たちのフレームワークはF1スコアを少なくとも20%以上改善できます。
論文 参考訳(メタデータ) (2020-12-02T14:56:22Z) - Heterogeneous Graph Collaborative Filtering [25.05199172369437]
本稿では,ユーザ間インタラクションを異種グラフとしてモデル化し,ユーザ間のインタラクションを示すだけでなく,ユーザ間のインタラクションの類似性を示すエッジをモデル化する。
我々は、相互作用信号と類似信号の両方を明示的にキャプチャできるGCNベースのフレームワークであるヘテロジニアスグラフ協調フィルタリング(HGCF)を開発した。
論文 参考訳(メタデータ) (2020-11-13T08:34:53Z) - Graph matching between bipartite and unipartite networks: to collapse,
or not to collapse, that is the question [13.625395368083641]
一致するグラフの1つが二部ネットワークであり、一方が一部ネットワークであるような共通的な設定に対処する。
本稿では,二部グラフと一部グラフのグラフマッチング問題を,非方向のグラフィカルモデルを用いて定式化する。
両部ネットワークを単部ネットワークに変換するという単純なアプローチよりも,我々の手法がより正確なマッチングを実現する方法を示す。
論文 参考訳(メタデータ) (2020-02-05T05:24:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。