Task-oriented Over-the-air Computation for Edge-device Co-inference with Balanced Classification Accuracy
- URL: http://arxiv.org/abs/2407.00955v1
- Date: Mon, 1 Jul 2024 04:17:32 GMT
- Title: Task-oriented Over-the-air Computation for Edge-device Co-inference with Balanced Classification Accuracy
- Authors: Xiang Jiao, Dingzhu Wen, Guangxu Zhu, Wei Jiang, Wu Luo, Yuanming Shi,
- Abstract summary: A task-oriented over-the-air computation scheme is proposed for a multidevice artificial intelligence system.
A novel tractable inference accuracy metric is proposed for classification tasks, which is called minimum pair-wise discriminant gain.
This paper jointly optimize the minimum discriminant gain of all feature elements instead of separately maximizing that of each element in the existing designs.
- Score: 32.48617448956706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge-device co-inference, which concerns the cooperation between edge devices and an edge server for completing inference tasks over wireless networks, has been a promising technique for enabling various kinds of intelligent services at the network edge, e.g., auto-driving. In this paradigm, the concerned design objective of the network shifts from the traditional communication throughput to the effective and efficient execution of the inference task underpinned by the network, measured by, e.g., the inference accuracy and latency. In this paper, a task-oriented over-the-air computation scheme is proposed for a multidevice artificial intelligence system. Particularly, a novel tractable inference accuracy metric is proposed for classification tasks, which is called minimum pair-wise discriminant gain. Unlike prior work measuring the average of all class pairs in feature space, it measures the minimum distance of all class pairs. By maximizing the minimum pair-wise discriminant gain instead of its average counterpart, any pair of classes can be better separated in the feature space, and thus leading to a balanced and improved inference accuracy for all classes. Besides, this paper jointly optimizes the minimum discriminant gain of all feature elements instead of separately maximizing that of each element in the existing designs. As a result, the transmit power can be adaptively allocated to the feature elements according to their different contributions to the inference accuracy, opening an extra degree of freedom to improve inference performance. Extensive experiments are conducted using a concrete use case of human motion recognition to verify the superiority of the proposed design over the benchmarking scheme.
Related papers
- Hyperspherical Classification with Dynamic Label-to-Prototype Assignment [5.978350039412277]
We present a simple yet effective method to optimize the category assigned to each prototype during the training.
We solve this optimization using a sequential combination of gradient descent and Bipartide matching.
Our method outperforms its competitors by 1.22% accuracy on CIFAR-100, and 2.15% on ImageNet-200 using a metric space dimension half of the size of its competitors.
arXiv Detail & Related papers (2024-03-25T17:01:34Z) - Task-Oriented Over-the-Air Computation for Multi-Device Edge AI [57.50247872182593]
6G networks for supporting edge AI features task-oriented techniques that focus on effective and efficient execution of AI task.
Task-oriented over-the-air computation (AirComp) scheme is proposed in this paper for multi-device split-inference system.
arXiv Detail & Related papers (2022-11-02T16:35:14Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Uni-Perceiver: Pre-training Unified Architecture for Generic Perception
for Zero-shot and Few-shot Tasks [73.63892022944198]
We present a generic perception architecture named Uni-Perceiver.
It processes a variety of modalities and tasks with unified modeling and shared parameters.
Results show that our pre-trained model without any tuning can achieve reasonable performance even on novel tasks.
arXiv Detail & Related papers (2021-12-02T18:59:50Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
Bi-Lipschitz regularization of neural network layers preserve relative distances between data instances in the feature spaces of each layer.
With the use of an attentive set encoder, we propose to meta learn either diagonal or diagonal plus low-rank factors to efficiently construct task specific covariance matrices.
We also propose an inference procedure which utilizes scaled energy to achieve a final predictive distribution.
arXiv Detail & Related papers (2021-10-12T22:04:19Z) - Communication-Computation Efficient Device-Edge Co-Inference via AutoML [4.06604174802643]
Device-edge co-inference partitions a deep neural network between a resource-constrained mobile device and an edge server.
On-device model sparsity level and intermediate feature compression ratio have direct impacts on workload and communication overhead.
We propose a novel automated machine learning (AutoML) framework based on deep reinforcement learning (DRL)
arXiv Detail & Related papers (2021-08-30T06:36:30Z) - Multi-task Federated Edge Learning (MtFEEL) in Wireless Networks [1.9250873974729816]
Federated Learning (FL) has evolved as a promising technique to handle distributed machine learning across edge devices.
A novel communication efficient FL algorithm for personalised learning in a wireless setting with guarantees is presented.
arXiv Detail & Related papers (2021-08-05T10:54:38Z) - Decoupled and Memory-Reinforced Networks: Towards Effective Feature
Learning for One-Step Person Search [65.51181219410763]
One-step methods have been developed to handle pedestrian detection and identification sub-tasks using a single network.
There are two major challenges in the current one-step approaches.
We propose a decoupled and memory-reinforced network (DMRNet) to overcome these problems.
arXiv Detail & Related papers (2021-02-22T06:19:45Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.