Exploring quantum geometry created by quantum matter
- URL: http://arxiv.org/abs/2211.01525v1
- Date: Thu, 3 Nov 2022 00:02:46 GMT
- Title: Exploring quantum geometry created by quantum matter
- Authors: Abhay Ashtekar
- Abstract summary: The goal of this investigation is to probe the Coulombic' aspects of quantum geometry that are governed entirely by matter sources.
Our analysis will reveal novel aspects of quantum gravity that bring out limitations of classical and semi-classical theories in unforeseen regimes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exactly soluble models can serve as excellent tools to explore conceptual
issues in non-perturbative quantum gravity. In perturbative approaches, it is
only the two radiative modes of the linearized gravitational field that are
quantized. The goal of this investigation is to probe the `Coulombic' aspects
of quantum geometry that are governed entirely by matter sources. Since there
are no gravitational waves in 3 dimensions, 3-d gravity coupled to matter
provides an ideal arena for this task. Our analysis will reveal novel aspects
of quantum gravity that bring out limitations of classical and semi-classical
theories in unforeseen regimes: non-linearities of general relativity can
magnify small quantum fluctuations in the matter sector to large effects in the
gravitational sector. Finally, this analysis leads to thought experiments that
bring out rather starkly why understanding of the nature of physical reality
depends sensitively on the theoretical lens with which it is probed. As
theories becomes richer, new scales emerge, triggering novel effects that could
not be imagined before. The model provides a concise realization of this
well-known chain.
Related papers
- Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Entropy production due to spacetime fluctuations [0.0]
We consider a non-relativistic quantum system interacting with gravitational waves.
We employ the consistent histories approach to quantum mechanics to define a fluctuation relation for this system.
As a result, thermodynamic entropy must be produced in the system due to its unavoidable interaction with the quantum fluctuations of spacetime.
arXiv Detail & Related papers (2024-07-30T20:52:32Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Is Planckian discreteness observable in cosmology? [47.03992469282679]
A Planck scale inflationary era produces the scale invariant spectrum of inhomogeneities with very small tensor-to-scalar ratio of perturbations.
Here we evoke the possibility that some of the major puzzles in cosmology would have an explanation rooted in quantum gravity.
arXiv Detail & Related papers (2024-05-21T06:53:37Z) - Testing Quantum Gravity using Pulsed Optomechanical Systems [13.650870855008112]
We consider the Schr"odinger-Newton (SN) theory and the Correlated Worldline (CWL) theory, and show that they can be distinguished from conventional quantum mechanics.
We find that discriminating between the theories will be very difficult until experimental control over low frequency quantum optomechanical systems is pushed further.
arXiv Detail & Related papers (2023-11-03T17:06:57Z) - Decoherence of a composite particle induced by a weak quantized
gravitational field [0.0]
We study the decoherence of a quantum system induced by the quantized gravitational field and by its own quantum nature.
Our results may be important in providing a better understanding of many phenomena like the decoherence induced by the gravitational time-dilation.
arXiv Detail & Related papers (2023-08-14T20:49:16Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Complementarity-Entanglement Tradeoff in Quantum Gravity [0.0]
Quantization of the gravity remains one of the most important, yet extremely illusive, challenges at the heart of modern physics.
Recently, it has been discovered that gravitationally-induced entanglement, tailored in the interferometric frameworks, can be used to witness the quantum nature of the gravity.
arXiv Detail & Related papers (2022-05-04T09:34:10Z) - A Causal Framework for Non-Linear Quantum Mechanics [0.0]
We show that the resulting low-energy theory, non-linear quantum mechanics, is causal, preserves probability and permits a consistent description of the process of measurement.
We show that non-linear quantum effects can be observed in macroscopic systems even in the presence of de-coherence.
Non-linear quantum mechanics also enables novel gravitational phenomena and may open new directions to solve the black hole information problem.
arXiv Detail & Related papers (2021-06-19T21:52:27Z) - Gravitational effects in macroscopic quantum systems: a first-principles
analysis [0.0]
We analyze the weak-field limit of General Relativity with matter and its possible quantisations.
This analysis aims towards a predictive quantum theory to provide a first-principles description of gravitational effects in macroscopic quantum systems.
arXiv Detail & Related papers (2021-03-14T21:29:11Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.