論文の概要: NaRPA: Navigation and Rendering Pipeline for Astronautics
- arxiv url: http://arxiv.org/abs/2211.01566v1
- Date: Thu, 3 Nov 2022 03:07:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 14:28:59.059530
- Title: NaRPA: Navigation and Rendering Pipeline for Astronautics
- Title(参考訳): NaRPA: 宇宙飛行士のためのナビゲーションとレンダリングパイプライン
- Authors: Roshan Thomas Eapen, Ramchander Rao Bhaskara, Manoranjan Majji
- Abstract要約: NaRPAはレイトレーシングベースのコンピュータグラフィックスエンジンで、宇宙画像のための光輸送をモデル化しシミュレートする。
画像レンダリングに加えて、エンジンは点雲、深さ、輪郭マップ生成機能も備えている。
- 参考スコア(独自算出の注目度): 4.282159812965446
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents Navigation and Rendering Pipeline for Astronautics
(NaRPA) - a novel ray-tracing-based computer graphics engine to model and
simulate light transport for space-borne imaging. NaRPA incorporates lighting
models with attention to atmospheric and shading effects for the synthesis of
space-to-space and ground-to-space virtual observations. In addition to image
rendering, the engine also possesses point cloud, depth, and contour map
generation capabilities to simulate passive and active vision-based sensors and
to facilitate the designing, testing, or verification of visual navigation
algorithms. Physically based rendering capabilities of NaRPA and the efficacy
of the proposed rendering algorithm are demonstrated using applications in
representative space-based environments. A key demonstration includes NaRPA as
a tool for generating stereo imagery and application in 3D coordinate
estimation using triangulation. Another prominent application of NaRPA includes
a novel differentiable rendering approach for image-based attitude estimation
is proposed to highlight the efficacy of the NaRPA engine for simulating
vision-based navigation and guidance operations.
- Abstract(参考訳): 本稿では,宇宙画像のための光輸送をモデル化しシミュレートする,新しいレイトレーシングベースのコンピュータグラフィックスエンジンnarpa(navigation and rendering pipeline for astronautics)を提案する。
NaRPAは、宇宙空間と地上空間の仮想観測を合成するために、大気やシェーディング効果に注意を向けた照明モデルを組み込んでいる。
画像レンダリングに加えて、エンジンには点雲、深度、輪郭マップの生成能力があり、受動的かつアクティブな視覚ベースのセンサーをシミュレートし、視覚ナビゲーションアルゴリズムの設計、テスト、検証を容易にする。
NaRPAの物理ベースレンダリング機能と提案アルゴリズムの有効性を,代表的空間ベース環境における応用を用いて実証した。
鍵となるデモンストレーションは、立体画像を生成するツールとしてNaRPAを含み、三角測量を用いた3次元座標推定に応用する。
NaRPAのもう一つの顕著な応用は、視覚に基づくナビゲーションとガイダンス操作をシミュレートするためのNaRPAエンジンの有効性を強調するために、画像ベースの姿勢推定のための新しい微分可能なレンダリング手法を提案することである。
関連論文リスト
- Bridging Domain Gap for Flight-Ready Spaceborne Vision [4.14360329494344]
この研究は、既知の非協力的なターゲット宇宙船の単眼的なポーズ推定のためのニューラルネットワーク(NN)であるSpacecraft Pose Network v3(SPNv3)を提示する。
SPNv3は、オフラインのトレーニングや地上での検証で観測されていない、宇宙で撮影された画像に堅牢性を提供しながら、計算的に効率的であるように設計され、訓練されている。
実験により、最後のSPNv3は、コンピュータ生成合成画像のみを訓練しながら、ロボットテストベッドからのハードウェア・イン・ループ画像に対して、最先端の精度を達成できることが示されている。
論文 参考訳(メタデータ) (2024-09-18T02:56:50Z) - An Autonomous Vision-Based Algorithm for Interplanetary Navigation [0.0]
視覚に基づくナビゲーションアルゴリズムは、軌道決定法と画像処理パイプラインを組み合わせることで構築される。
光収差と光時間効果の1次近似を提供する新しい解析モデルを開発した。
アルゴリズムの性能は、高忠実な地球-火星間移動で試験される。
論文 参考訳(メタデータ) (2023-09-18T08:54:29Z) - On the Generation of a Synthetic Event-Based Vision Dataset for
Navigation and Landing [69.34740063574921]
本稿では,最適な着陸軌道からイベントベースの視覚データセットを生成する手法を提案する。
我々は,惑星と小惑星の自然シーン生成ユーティリティを用いて,月面のフォトリアリスティックな画像のシーケンスを構築した。
パイプラインは500トラジェクトリのデータセットを構築することで,表面特徴の現実的なイベントベース表現を生成することができることを示す。
論文 参考訳(メタデータ) (2023-08-01T09:14:20Z) - 3D Reconstruction of Non-cooperative Resident Space Objects using
Instant NGP-accelerated NeRF and D-NeRF [0.0]
この研究は、ニューラル放射場(NeRF)アルゴリズムの変動であるInstant NeRFとD-NeRFを軌道上のRSOをマッピングする問題に適応させる。
これらのアルゴリズムは、宇宙船モックアップの画像のデータセットを用いて、3次元再構成の品質とハードウェア要件を評価する。
論文 参考訳(メタデータ) (2023-01-22T05:26:08Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
本稿では,ディープラーニングに基づくコンピュータビジョンアルゴリズムを用いて,小型UAVのリアルタイムセンサ処理を実現する方法について述べる。
すべてのアルゴリズムは、ディープニューラルネットワークに基づく最先端の画像処理手法を用いて開発されている。
論文 参考訳(メタデータ) (2022-11-02T11:10:42Z) - Semi-Perspective Decoupled Heatmaps for 3D Robot Pose Estimation from
Depth Maps [66.24554680709417]
協調環境における労働者とロボットの正確な3D位置を知ることは、いくつかの実際のアプリケーションを可能にする。
本研究では、深度デバイスと深度ニューラルネットワークに基づく非侵襲的なフレームワークを提案し、外部カメラからロボットの3次元ポーズを推定する。
論文 参考訳(メタデータ) (2022-07-06T08:52:12Z) - UAVs Beneath the Surface: Cooperative Autonomy for Subterranean Search
and Rescue in DARPA SubT [5.145696432159643]
本稿では, 複雑なトポロジを持つ地下ドメインの探索・救助作業において, 自律的協調型UAVの新たなアプローチを提案する。
提案されたシステムは、DARPA SubTファイナルのVirtual TrackでCTU-CRAS-NORLABチームの一員として第2位にランクされた。
提案手法はまた、現実世界の競争の極端に厳しく制限された環境で飛行する物理的UAVに展開するための堅牢なシステムであることを証明した。
論文 参考訳(メタデータ) (2022-06-16T13:54:33Z) - Polyline Based Generative Navigable Space Segmentation for Autonomous
Visual Navigation [57.3062528453841]
ロボットが教師なしの方法で移動可能な空間分割を学習できるようにするための表現学習ベースのフレームワークを提案する。
提案するPSV-Netは,単一のラベルを使わずとも,高精度で視覚ナビゲーション可能な空間を学習可能であることを示す。
論文 参考訳(メタデータ) (2021-10-29T19:50:48Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
そこで我々は,エージェントが自我中心のRGB-D観測を用いて,その占有状態を可視領域を超えて推定する,占有予測を提案する。
エゴセントリックなビューとトップダウンマップの両方でコンテキストを活用することで、私たちのモデルは環境のより広いマップを予測できます。
われわれのアプローチは、2020 Habitat PointNav Challengeの優勝だ。
論文 参考訳(メタデータ) (2020-08-21T03:16:51Z) - Transferable Active Grasping and Real Embodied Dataset [48.887567134129306]
ハンドマウント型RGB-Dカメラを用いて把握可能な視点を探索する方法を示す。
現実的な3段階の移動可能な能動把握パイプラインを開発し、未確認のクラッタシーンに適応する。
本研究のパイプラインでは,カテゴリ非関連行動の把握と確保において,スパース報酬問題を克服するために,新しいマスク誘導報酬を提案する。
論文 参考訳(メタデータ) (2020-04-28T08:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。