論文の概要: 3D Reconstruction of Non-cooperative Resident Space Objects using
Instant NGP-accelerated NeRF and D-NeRF
- arxiv url: http://arxiv.org/abs/2301.09060v3
- Date: Fri, 9 Jun 2023 18:26:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 01:30:17.923994
- Title: 3D Reconstruction of Non-cooperative Resident Space Objects using
Instant NGP-accelerated NeRF and D-NeRF
- Title(参考訳): インスタントNGP加速型NeRFとD-NeRFを用いた非協調型宇宙物体の3次元再構成
- Authors: Basilio Caruso and Trupti Mahendrakar and Van Minh Nguyen and Ryan T.
White and Todd Steffen
- Abstract要約: この研究は、ニューラル放射場(NeRF)アルゴリズムの変動であるInstant NeRFとD-NeRFを軌道上のRSOをマッピングする問題に適応させる。
これらのアルゴリズムは、宇宙船モックアップの画像のデータセットを用いて、3次元再構成の品質とハードウェア要件を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of non-cooperative resident space objects (RSOs) in orbit
has spurred the demand for active space debris removal, on-orbit servicing
(OOS), classification, and functionality identification of these RSOs. Recent
advances in computer vision have enabled high-definition 3D modeling of objects
based on a set of 2D images captured from different viewing angles. This work
adapts Instant NeRF and D-NeRF, variations of the neural radiance field (NeRF)
algorithm to the problem of mapping RSOs in orbit for the purposes of
functionality identification and assisting with OOS. The algorithms are
evaluated for 3D reconstruction quality and hardware requirements using
datasets of images of a spacecraft mock-up taken under two different lighting
and motion conditions at the Orbital Robotic Interaction, On-Orbit Servicing
and Navigation (ORION) Laboratory at Florida Institute of Technology. Instant
NeRF is shown to learn high-fidelity 3D models with a computational cost that
could feasibly be trained on on-board computers.
- Abstract(参考訳): 軌道上での非協力的な宇宙物体(RSOs)の増殖は、アクティブな宇宙デブリ除去、軌道上サービシング(OOS)、分類、機能同定の要求を刺激している。
近年のコンピュータビジョンの進歩により、異なる角度から撮影された2次元画像群に基づくオブジェクトの高精細な3次元モデリングが可能になっている。
この研究は、Instant NeRFとD-NeRF、ニューラル放射場(NeRF)アルゴリズムのバリエーションを、機能同定とOOSのアシストのために軌道上のROSをマッピングする問題に適用する。
これらのアルゴリズムは、フロリダ工科大学のOrbital Robotic Interaction, On-Orbit Servicing and Navigation (ORION) Laboratoryにおいて、2つの異なる照明と運動条件下で撮影された宇宙船モックアップの画像のデータセットを用いて、3D再構成の品質とハードウェア要件を評価する。
Instant NeRFは、計算コストで高忠実度3Dモデルを学習し、オンボードコンピュータでトレーニングできることが示されている。
関連論文リスト
- Bridging Domain Gap for Flight-Ready Spaceborne Vision [4.14360329494344]
この研究は、既知の非協力的なターゲット宇宙船の単眼的なポーズ推定のためのニューラルネットワーク(NN)であるSpacecraft Pose Network v3(SPNv3)を提示する。
SPNv3は、オフラインのトレーニングや地上での検証で観測されていない、宇宙で撮影された画像に堅牢性を提供しながら、計算的に効率的であるように設計され、訓練されている。
実験により、最後のSPNv3は、コンピュータ生成合成画像のみを訓練しながら、ロボットテストベッドからのハードウェア・イン・ループ画像に対して、最先端の精度を達成できることが示されている。
論文 参考訳(メタデータ) (2024-09-18T02:56:50Z) - Evaluating geometric accuracy of NeRF reconstructions compared to SLAM method [0.0]
フォトグラメトリーは画像ベースの3D再構成を行うことができるが、計算コストが高く、複雑な幾何学やフォトリアリズムを復元するために非常に高密度な画像表現を必要とする。
NeRFは、スパース画像上でニューラルネットワークをトレーニングし、データをポーズすることで3Dシーン再構築を行い、少ない入力データでフォトグラム測定に優れた結果が得られる。
縦型PVCシリンダの直径を推定するための2つのNeRFシーン再構成の評価を行った。
論文 参考訳(メタデータ) (2024-07-15T21:04:11Z) - Reconstructing Satellites in 3D from Amateur Telescope Images [42.850623200702394]
本稿では、小型アマチュア望遠鏡で撮影した映像を利用して、低地球軌道上の衛星の3次元再構成のための枠組みを提案する。
これらの望遠鏡から得られたビデオデータは、激しい動きのぼかし、大気の乱流、広汎な背景光汚染、焦点距離の延長、観測視点の制約など、標準的な3D再構成作業のデータと大きく異なる。
本研究では,高忠実度3次元モデル再構成を実現するために,SfM(Structure from Motion)アプローチと改良された3次元ガウススプレイティングアルゴリズムを適用した。
論文 参考訳(メタデータ) (2024-04-29T03:13:09Z) - Characterizing Satellite Geometry via Accelerated 3D Gaussian Splatting [0.0]
本稿では,3次元ガウス散乱に基づく軌道上の衛星のマッピング手法を提案する。
ループ型衛星モックアップにおけるモデルトレーニングと3次元レンダリング性能を実演する。
我々のモデルでは、未知の衛星の高品質な新しいビューを、従来のNeRFベースのアルゴリズムよりも2桁近く高速にトレーニングし、レンダリングすることが可能であることが示されている。
論文 参考訳(メタデータ) (2024-01-05T00:49:56Z) - Enhance-NeRF: Multiple Performance Evaluation for Neural Radiance Fields [2.5432277893532116]
ニューラル・ラジアンス・フィールド(NeRF)は任意の視点からリアルな画像を生成することができる。
NeRFベースのモデルは、色付きの"fog"ノイズによって引き起こされる干渉問題の影響を受けやすい。
当社のアプローチはEnhance-NeRFと呼ばれ、低反射率と高反射率のオブジェクトの表示のバランスをとるためにジョイントカラーを採用している。
論文 参考訳(メタデータ) (2023-06-08T15:49:30Z) - Clean-NeRF: Reformulating NeRF to account for View-Dependent
Observations [67.54358911994967]
本稿では,複雑なシーンにおける3次元再構成と新しいビューレンダリングのためのクリーンネRFを提案する。
clean-NeRFはプラグインとして実装することができ、既存のNeRFベースのメソッドを追加入力なしですぐに利用することができる。
論文 参考訳(メタデータ) (2023-03-26T12:24:31Z) - DehazeNeRF: Multiple Image Haze Removal and 3D Shape Reconstruction
using Neural Radiance Fields [56.30120727729177]
DehazeNeRFは,湿潤な環境下で頑健に動作するフレームワークとして紹介する。
提案手法は,複数視点のヘイズ除去,新しいビュー合成,既存手法が失敗する3次元形状再構成を成功させるものである。
論文 参考訳(メタデータ) (2023-03-20T18:03:32Z) - NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from
3D-aware Diffusion [107.67277084886929]
単一の画像からの新しいビュー合成には、オブジェクトやシーンの隠蔽領域を推論すると同時に、入力とのセマンティックおよび物理的整合性を同時に維持する必要がある。
そこで我々は,NerfDiffを提案する。NerfDiffは3D対応条件拡散モデル(CDM)の知識を,テスト時に仮想ビューの集合を合成・精製することで,NeRFに抽出することでこの問題に対処する。
さらに,CDMサンプルから3次元一貫した仮想ビューを同時に生成し,改良された仮想ビューに基づいてNeRFを微調整する新しいNeRF誘導蒸留アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-20T17:12:00Z) - Aerial Monocular 3D Object Detection [67.20369963664314]
DVDETは2次元画像空間と3次元物理空間の両方で空中単分子3次元物体検出を実現するために提案される。
高度視差変形問題に対処するため,新しい測地変形変換モジュールを提案する。
より多くの研究者がこの領域を調査するよう促すため、データセットと関連するコードをリリースします。
論文 参考訳(メタデータ) (2022-08-08T08:32:56Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - Simple and Effective Synthesis of Indoor 3D Scenes [78.95697556834536]
1枚以上の画像から3D屋内シーンを没入する問題について検討する。
我々の狙いは、新しい視点から高解像度の画像とビデオを作成することである。
本稿では,不完全点雲の再投影から高解像度のRGB-D画像へ直接マップするイメージ・ツー・イメージのGANを提案する。
論文 参考訳(メタデータ) (2022-04-06T17:54:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。