Universality and its limits in non-Hermitian many-body quantum chaos
using the Sachdev-Ye-Kitaev model
- URL: http://arxiv.org/abs/2211.01650v2
- Date: Fri, 5 May 2023 14:24:58 GMT
- Title: Universality and its limits in non-Hermitian many-body quantum chaos
using the Sachdev-Ye-Kitaev model
- Authors: Antonio M. Garc\'ia-Garc\'ia, Lucas S\'a, and Jacobus J. M.
Verbaarschot
- Abstract summary: Spectral rigidity in Hermitian quantum chaotic systems signals the presence of dynamical universal features at timescales that can be much shorter than the Heisenberg time.
We study the analog of this timescale in many-body non-Hermitian quantum chaos by a detailed analysis of long-range spectral correlators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spectral rigidity in Hermitian quantum chaotic systems signals the presence
of dynamical universal features at timescales that can be much shorter than the
Heisenberg time. We study the analog of this timescale in many-body
non-Hermitian quantum chaos by a detailed analysis of long-range spectral
correlators. For that purpose, we investigate the number variance and the
spectral form factor of a non-Hermitian $q$-body Sachdev-Ye-Kitaev (nHSYK)
model, which describes $N$ fermions in zero spatial dimensions. After an
analytical and numerical analysis of these spectral observables for
non-Hermitian random matrices, and a careful unfolding, we find good agreement
with the nHSYK model for $q > 2$ starting at a timescale that decreases sharply
with $q$. The source of deviation from universality, identified analytically,
is ensemble fluctuations not related to the quantum dynamics. For fixed $q$ and
large enough $N$, these fluctuations become dominant up until after the
Heisenberg time, so that the spectral form factor is no longer useful for the
study of quantum chaos. In all cases, our results point to a weakened or
vanishing spectral rigidity that effectively delays the observation of full
quantum ergodicity. We also show that the number variance displays
nonstationary spectral correlations for both the nHSYK model and random
matrices. This nonstationarity, also not related to the quantum dynamics,
points to intrinsic limitations of these observables to describe the quantum
chaotic motion. On the other hand, we introduce the local spectral form factor,
which is shown to be stationary and not affected by collective fluctuations,
and propose it as an effective diagnostic of non-Hermitian quantum chaos. For
$q = 2$, we find saturation to Poisson statistics at a timescale of $\log D$,
compared to a scale of $\sqrt D$ for $ q>2$, with $D $ the total number of
states.
Related papers
- Semiclassical Quantum Trajectories in the Monitored Lipkin-Meshkov-Glick Model [41.94295877935867]
We investigate the dynamics of the Lipkin-Meshkov-Glick model, composed of $N$ all-to-all interacting spins $1/2$, under a weak external monitoring.
We derive a set of semiclassical equations describing the evolution of the expectation values of global spin observables, which become exact in the thermodynamic limit.
The transition is not affected by post-selection issues, as it is already visible at the level of ensemble averages.
arXiv Detail & Related papers (2024-07-29T18:00:00Z) - Quantum Chaos, Randomness and Universal Scaling of Entanglement in Various Krylov Spaces [0.0]
We derive an analytical expression for the time-averaged quantum Fisher information (QFI) that applies to all quantum chaotic systems governed by Dyson's ensembles.
Our approach integrates concepts of randomness, multipartite entanglement and quantum chaos.
arXiv Detail & Related papers (2024-07-16T15:11:20Z) - Quantifying non-Hermiticity using single- and many-particle quantum properties [14.37149160708975]
The non-Hermitian paradigm of quantum systems displays salient features drastically different from Hermitian counterparts.
We propose a formalism that quantifies the (dis-)similarity of these right and left ensembles, for single- as well as many-particle quantum properties.
Our findings can be instrumental in unveiling new exotic quantum phases of non-Hermitian quantum many-body systems.
arXiv Detail & Related papers (2024-06-19T13:04:47Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Randomly Pruning the Sachdev-Ye-Kitaev model [0.0]
The Sachdev-Ye-Kitaev model (SYK) is renowned for its short-time chaotic behavior.
The Thouless energy, representing the energy scale at which the universal chaotic behavior in the energy spectrum ceases, can be determined from the spectrum itself.
arXiv Detail & Related papers (2024-01-14T16:20:16Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Observing super-quantum correlations across the exceptional point in a
single, two-level trapped ion [48.7576911714538]
In two-level quantum systems - qubits - unitary dynamics theoretically limit these quantum correlations to $2qrt2$ or 1.5 respectively.
Here, using a dissipative, trapped $40$Ca$+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$.
These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics.
arXiv Detail & Related papers (2023-04-24T19:44:41Z) - Symmetry Classification and Universality in Non-Hermitian Many-Body
Quantum Chaos by the Sachdev-Ye-Kitaev Model [0.0]
For Hermitian Hamiltonians, quantum chaotic motion is related to random matrix theory spectral correlations.
We show that local level statistics, which probe the dynamics around the Heisenberg time, of a non-Hermitian $q$-body Sachdev-Ye-Kitev model with $N$ Majorana fermions, are also well described by random matrix theory.
We identify $19$ out of the $38$ non-Hermitian universality classes in the nHSYK model, including those corresponding to the way.
arXiv Detail & Related papers (2021-10-07T13:26:17Z) - Heisenberg-Limited Waveform Estimation with Solid-State Spins in Diamond [15.419555338671772]
Heisenberg limit in arbitrary waveform estimation is quite different with parameter estimation.
It is still a non-trivial challenge to generate a large number of exotic quantum entangled states to achieve this quantum limit.
This work provides an essential step towards realizing quantum-enhanced structure recognition in a continuous space and time.
arXiv Detail & Related papers (2021-05-13T01:52:18Z) - Quantum aspects of chaos and complexity from bouncing cosmology: A study
with two-mode single field squeezed state formalism [0.0]
This paper is devoted to the study of out-of-equilibrium aspects and quantum chaos appearing in the universe.
We use the $Out-of-Time Ordered correlation (OTOC)$ functions for probing the random behaviour of the universe both at early and the late times.
arXiv Detail & Related papers (2020-09-08T16:10:52Z) - Random Matrix Spectral Form Factor in Kicked Interacting Fermionic
Chains [1.6295305195753724]
We study quantum chaos and spectral correlations in periodically driven (Floquet) fermionic chains with long-range two-particle interactions.
We analytically show that the spectral form factor precisely follows the prediction of random matrix theory in the regime of long chains.
arXiv Detail & Related papers (2020-05-21T07:02:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.