論文の概要: An agent-based approach to procedural city generation incorporating Land
Use and Transport Interaction models
- arxiv url: http://arxiv.org/abs/2211.01959v1
- Date: Fri, 21 Oct 2022 13:49:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-06 15:04:20.153230
- Title: An agent-based approach to procedural city generation incorporating Land
Use and Transport Interaction models
- Title(参考訳): 土地利用・交通相互作用モデルを用いた手続き型都市生成へのエージェントベースアプローチ
- Authors: Luiz Fernando Silva Eug\^enio dos Santos, Claus Aranha, Andr\'e Ponce
de Leon F de Carvalho
- Abstract要約: 我々は,現実的な人工都市を計画できるエージェントベースシステムのための報酬関数を開発する。
このシステムは,道路網における帯状化やアクセシビリティといった,実際の集落の主要構成要素をマイクロスケールで再現することを目的としている。
- 参考スコア(独自算出の注目度): 5.86857986102133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We apply the knowledge of urban settings established with the study of Land
Use and Transport Interaction (LUTI) models to develop reward functions for an
agent-based system capable of planning realistic artificial cities. The system
aims to replicate in the micro scale the main components of real settlements,
such as zoning and accessibility in a road network. Moreover, we propose a
novel representation for the agent's environment that efficiently combines the
road graph with a discrete model for the land. Our system starts from an empty
map consisting only of the road network graph, and the agent incrementally
expands it by building new sites while distinguishing land uses between
residential, commercial, industrial, and recreational.
- Abstract(参考訳): 土地利用・交通相互作用モデル(luti)モデルによって確立された都市環境の知識を応用し,現実的な人工都市を計画できるエージェントベースのシステムに対する報奨機能を開発する。
このシステムは、道路網におけるゾーニングやアクセシビリティなど、実際の集落の主要な構成要素をマイクロスケールで再現することを目指している。
さらに,道路グラフと土地の離散モデルとを効率的に結合するエージェント環境の新しい表現法を提案する。
我々のシステムは道路網グラフのみからなる空の地図から始まり、エージェントは住宅地、商業地、工業地、レクリエーションの土地利用を区別しながら、新しい場所を構築して徐々に拡張する。
関連論文リスト
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - A Deep Learning Representation of Spatial Interaction Model for
Resilient Spatial Planning of Community Business Clusters [4.8051028509814575]
本稿では,コミュニティビジネスクラスタと取引エリア間の訪問フローを予測するためのSIM-GATモデルを提案する。
グラフベースのディープラーニングモデル、すなわちGraph AttenTion Network(GAT)は、ビジネスのクラスタと相互依存性をキャプチャするために使用される。
論文 参考訳(メタデータ) (2024-01-09T23:42:21Z) - AI Agent as Urban Planner: Steering Stakeholder Dynamics in Urban
Planning via Consensus-based Multi-Agent Reinforcement Learning [8.363841553742912]
本稿では,コンセンサスを基盤としたマルチエージェント強化学習フレームワークについて紹介する。
この枠組みは参加型都市計画に役立ち、多様な知的エージェントを利害関係者の代表として好まれる土地利用形態に投票することができる。
マルチエージェント強化学習を統合することで、参加型都市計画決定がよりダイナミックで、コミュニティのニーズに適応することを保証する。
論文 参考訳(メタデータ) (2023-10-25T17:04:11Z) - Deep Occupancy-Predictive Representations for Autonomous Driving [6.591194329459251]
提案アーキテクチャは,事前学習した状態表現のプロキシとして確率的占有率マップを符号化している。
エージェント中心エンコーダは,環境のマップ対応グラフ定式化を利用して任意の道路網や交通状況に一般化する。
論文 参考訳(メタデータ) (2023-03-07T20:21:49Z) - Online Grounding of PDDL Domains by Acting and Sensing in Unknown
Environments [62.11612385360421]
本稿では,エージェントが異なるタスクを実行できるフレームワークを提案する。
機械学習モデルを統合して、感覚データを抽象化し、目標達成のためのシンボリックプランニング、ナビゲーションのためのパスプランニングを行う。
提案手法を,RGB-Dオンボードカメラ,GPS,コンパスなど,正確なシミュレーション環境で評価する。
論文 参考訳(メタデータ) (2021-12-18T21:48:20Z) - Predicting Vehicles Trajectories in Urban Scenarios with Transformer
Networks and Augmented Information [0.0]
本稿では,トランスフォーマーネットワークに基づく歩行者軌道予測のための単純な構造を利用する。
我々は,最大5秒の地平線における都市シナリオにおける車両軌道予測の問題にそれらの利用を適応させる。
我々のモデルは最先端の成果を達成し、異なるタイプの都市環境に柔軟で適応可能であることを証明している。
論文 参考訳(メタデータ) (2021-06-01T15:18:55Z) - Exploiting latent representation of sparse semantic layers for improved
short-term motion prediction with Capsule Networks [0.12183405753834559]
本稿では,HD(High-Definition)マップの小さな領域に対応するスパースなセマンティクス層の階層的表現を学習する文脈において,Capsule Networks(CapsNets)の利用を検討する。
CapsNetsに基づくアーキテクチャを使用することで、検出された画像内の特徴間の階層的関係を維持すると同時に、プール操作によってしばしば発生する空間データの損失を防ぐことができる。
本モデルでは,ネットワーク全体の規模を大幅に削減しつつ,予測に関する最近の研究よりも大幅な改善を実現していることを示す。
論文 参考訳(メタデータ) (2021-03-02T11:13:43Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
疎結合グラフの学習値に基づいてマルチエージェントルーティングを行うことができるグラフニューラルネットワークに基づくモデルを提案する。
最大25ノードのグラフ上で2つのエージェントでトレーニングしたモデルでは,より多くのエージェントやノードを持つ状況に容易に一般化できることが示されている。
論文 参考訳(メタデータ) (2020-07-09T22:16:45Z) - Traffic Agent Trajectory Prediction Using Social Convolution and
Attention Mechanism [57.68557165836806]
本稿では,自律走行車周辺における標的エージェントの軌道予測モデルを提案する。
対象エージェントの履歴トラジェクトリをアテンションマスクとしてエンコードし、ターゲットエージェントとその周辺エージェント間の対話関係をエンコードするソーシャルマップを構築する。
提案手法の有効性を検証するため,提案手法を公開データセット上の複数の手法と比較し,20%の誤差低減を実現した。
論文 参考訳(メタデータ) (2020-07-06T03:48:08Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
本稿では,ベクトルで表される個々の道路成分の空間的局所性を利用する階層型グラフニューラルネットワークであるVectorNetを紹介する。
ベクトル化高定義(HD)マップとエージェントトラジェクトリの操作により、ロッキーなレンダリングや計算集約的なConvNetエンコーディングのステップを避けることができる。
我々は、社内行動予測ベンチマークと最近リリースされたArgoverse予測データセットでVectorNetを評価した。
論文 参考訳(メタデータ) (2020-05-08T19:07:03Z) - Learning to Move with Affordance Maps [57.198806691838364]
物理的な空間を自律的に探索し、ナビゲートする能力は、事実上あらゆる移動型自律エージェントの基本的な要件である。
従来のSLAMベースの探索とナビゲーションのアプローチは、主にシーン幾何学の活用に重点を置いている。
学習可能な余剰マップは探索と航法の両方において従来のアプローチの強化に利用でき、性能が大幅に向上することを示します。
論文 参考訳(メタデータ) (2020-01-08T04:05:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。