FingerFlex: Inferring Finger Trajectories from ECoG signals
- URL: http://arxiv.org/abs/2211.01960v2
- Date: Tue, 25 Apr 2023 19:14:18 GMT
- Title: FingerFlex: Inferring Finger Trajectories from ECoG signals
- Authors: Vladislav Lomtev, Alexander Kovalev, Alexey Timchenko
- Abstract summary: FingerFlex model is a convolutional encoder-decoder architecture adapted for finger movement regression on electrocorticographic (ECoG) brain data.
State-of-the-art performance was achieved on a publicly available BCI competition IV dataset 4 with a correlation coefficient between true and predicted trajectories up to 0.74.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motor brain-computer interface (BCI) development relies critically on neural
time series decoding algorithms. Recent advances in deep learning architectures
allow for automatic feature selection to approximate higher-order dependencies
in data. This article presents the FingerFlex model - a convolutional
encoder-decoder architecture adapted for finger movement regression on
electrocorticographic (ECoG) brain data. State-of-the-art performance was
achieved on a publicly available BCI competition IV dataset 4 with a
correlation coefficient between true and predicted trajectories up to 0.74. The
presented method provides the opportunity for developing fully-functional
high-precision cortical motor brain-computer interfaces.
Related papers
- Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
Current AIGC methods, such as score-based diffusion, are still deficient in terms of rapidity and efficiency.
We propose a time-continuous and analog in-memory neural differential equation solver for score-based diffusion.
We experimentally validate our solution with 180 nm resistive memory in-memory computing macros.
arXiv Detail & Related papers (2024-04-08T16:34:35Z) - CycleIK: Neuro-inspired Inverse Kinematics [12.29529468290859]
CycleIK is a neuro-robotic approach that wraps two novel neuro-inspired methods for the inverse kinematics (IK) task.
We show how embedding these into a hybrid neuro-genetic IK pipeline allows for further optimization.
arXiv Detail & Related papers (2023-07-21T13:03:27Z) - Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
We develop convolutional neural generative coding (Conv-NGC)
We implement a flexible neurobiologically-motivated algorithm that progressively refines latent state maps.
We study the effectiveness of our brain-inspired neural system on the tasks of reconstruction and image denoising.
arXiv Detail & Related papers (2022-11-22T06:42:41Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - An intertwined neural network model for EEG classification in
brain-computer interfaces [0.6696153817334769]
The brain computer interface (BCI) is a nonstimulatory direct and occasionally bidirectional communication link between the brain and a computer or an external device.
We present a deep neural network architecture specifically engineered to provide state-of-the-art performance in multiclass motor imagery classification.
arXiv Detail & Related papers (2022-08-04T09:00:34Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks.
Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines.
arXiv Detail & Related papers (2021-12-05T21:57:22Z) - Weighted Ensemble-model and Network Analysis: A method to predict fluid
intelligence via naturalistic functional connectivity [2.66512000865131]
We propose a new method namely Weighted Ensemble-model and Network Analysis.
It combines the machine learning and graph theory for improved fluid intelligence prediction.
Our proposed methods achieved best performance with 3.85 mean absolute deviation, 0.66 correlation coefficient and 0.42 R-squared coefficient.
arXiv Detail & Related papers (2021-01-06T11:17:49Z) - GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals [8.19994663278877]
A novel deep learning framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals.
The introduced approach has been shown to converge for both personalized and group-wise predictions.
arXiv Detail & Related papers (2020-06-16T04:57:12Z) - Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor
Imagery Recognition [9.039355687614076]
This paper presents a novel deep learning approach designed towards remarkably accurate and responsive motor imagery (MI) recognition based on scalp EEG.
BiLSTM with the Attention mechanism manages to derive relevant features from raw EEG signals.
The 0.4-second detection framework has shown effective and efficient prediction based on individual and group-wise training, with 98.81% and 94.64% accuracy, respectively.
arXiv Detail & Related papers (2020-05-02T10:03:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.