論文の概要: Adversarial Defense via Neural Oscillation inspired Gradient Masking
- arxiv url: http://arxiv.org/abs/2211.02223v1
- Date: Fri, 4 Nov 2022 02:13:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 15:50:28.835476
- Title: Adversarial Defense via Neural Oscillation inspired Gradient Masking
- Title(参考訳): 神経振動誘発勾配マスキングによる逆防御
- Authors: Chunming Jiang, Yilei Zhang
- Abstract要約: スパイクニューラルネットワーク(SNN)は、低消費電力、低レイテンシ、生物学的妥当性のために大きな注目を集めている。
本稿では,SNNの安全性を高めるためにバイオインスパイアされた発振機構を組み込んだ新しいニューラルモデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) attract great attention due to their low power
consumption, low latency, and biological plausibility. As they are widely
deployed in neuromorphic devices for low-power brain-inspired computing,
security issues become increasingly important. However, compared to deep neural
networks (DNNs), SNNs currently lack specifically designed defense methods
against adversarial attacks. Inspired by neural membrane potential oscillation,
we propose a novel neural model that incorporates the bio-inspired oscillation
mechanism to enhance the security of SNNs. Our experiments show that SNNs with
neural oscillation neurons have better resistance to adversarial attacks than
ordinary SNNs with LIF neurons on kinds of architectures and datasets.
Furthermore, we propose a defense method that changes model's gradients by
replacing the form of oscillation, which hides the original training gradients
and confuses the attacker into using gradients of 'fake' neurons to generate
invalid adversarial samples. Our experiments suggest that the proposed defense
method can effectively resist both single-step and iterative attacks with
comparable defense effectiveness and much less computational costs than
adversarial training methods on DNNs. To the best of our knowledge, this is the
first work that establishes adversarial defense through masking surrogate
gradients on SNNs.
- Abstract(参考訳): スパイクニューラルネットワーク(SNN)は、低消費電力、低レイテンシ、生物学的妥当性のために大きな注目を集めている。
低消費電力の脳にインスパイアされたコンピューティングのためのニューロモルフィックデバイスに広くデプロイされているため、セキュリティ問題はますます重要になっている。
しかしながら、ディープニューラルネットワーク(DNN)と比較して、SNNは現在、敵の攻撃に対する特別に設計された防御方法を欠いている。
神経膜電位発振に触発され,snsの安全性を高めるためにバイオインスパイア発振機構を組み込んだ新しい神経モデルを提案する。
実験の結果,ニューラル発振ニューロンを持つSNNは, LIFニューロンを持つ通常のSNNに比べて, アーキテクチャやデータセットに対する抵抗性が高いことがわかった。
さらに,元のトレーニング勾配を隠蔽し,攻撃者を「フェイク」ニューロンの勾配に混乱させて不正な対向サンプルを生成することで,モデルの勾配を変化させる防衛手法を提案する。
提案手法は,DNNの対人訓練法に比べて,防御効果が同等で,計算コストもはるかに少ない単段階攻撃と反復攻撃の両方に効果的に抵抗できることを示す。
我々の知る限りでは、これはSNN上の代理勾配をマスキングすることで敵防衛を確立する最初の作品である。
関連論文リスト
- Training Spiking Neural Networks via Augmented Direct Feedback Alignment [3.798885293742468]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックデバイスにニューラルネットワークを実装するための有望なソリューションである。
しかし、SNNニューロンの非分化性は、それらを訓練することを困難にしている。
本稿では、ランダムなプロジェクションに基づく勾配のないアプローチである拡張直接フィードバックアライメント(aDFA)を用いてSNNの訓練を行う。
論文 参考訳(メタデータ) (2024-09-12T06:22:44Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - Sneaky Spikes: Uncovering Stealthy Backdoor Attacks in Spiking Neural
Networks with Neuromorphic Data [15.084703823643311]
スパイキングニューラルネットワーク(SNN)は、エネルギー効率の向上と生物学的に有効なデータ処理機能を提供する。
本稿では,ニューロモルフィックデータセットと多様なトリガーを用いたSNNのバックドア攻撃について検討する。
我々は,攻撃成功率を100%まで達成しつつ,クリーンな精度に無視できる影響を保ちながら,様々な攻撃戦略を提示する。
論文 参考訳(メタデータ) (2023-02-13T11:34:17Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
イベントベースの計算を伴うスパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェアにおけるエネルギー効率の高い応用のために、脳にインスパイアされたモデルを約束している。
本研究では,最近提案されたトレーニング手法を拡張した平衡状態(SPIDE)に対するスパイクに基づく暗黙差分法について検討した。
論文 参考訳(メタデータ) (2023-02-01T04:22:59Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Toward Robust Spiking Neural Network Against Adversarial Perturbation [22.56553160359798]
スパイキングニューラルネットワーク(SNN)は、現実の効率クリティカルなアプリケーションにますます多くデプロイされている。
研究者はすでに、SNNを敵の例で攻撃できることを実証している。
我々の知る限りでは、これはSNNの堅牢なトレーニングに関する最初の分析である。
論文 参考訳(メタデータ) (2022-04-12T21:26:49Z) - Analysis of Power-Oriented Fault Injection Attacks on Spiking Neural
Networks [5.7494562086770955]
ディープニューラルネットワーク(DNN)の代替手段として,スパイキングニューラルネットワーク(SNN)が急速に普及している。
SNNには、セキュリティに敏感な資産(例えば、ニューロンしきい値電圧)と、敵が悪用できる脆弱性が含まれている。
本研究では,外部電源とレーザ誘起局所電源を用いた大域的障害発生攻撃について検討する。
最悪の場合、分類精度は85.65%低下する。
論文 参考訳(メタデータ) (2022-04-10T20:48:46Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
ベイジアンネットワーク(BNN)は、ランダム性を組み込むことで、敵の攻撃を扱うのに頑丈で適している。
我々はベイズ的推論(つまり変分ベイズ)をDenseNetアーキテクチャに融合させることで、BNN-DenseNetと呼ばれるBNNモデルを作成する。
逆向きに訓練されたBNNは、ほとんどの実験で非ベイズ的で逆向きに訓練されたBNNよりも優れています。
論文 参考訳(メタデータ) (2021-11-16T16:14:44Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects
of Discrete Input Encoding and Non-Linear Activations [9.092733355328251]
スパイキングニューラルネットワーク(SNN)は、敵対的攻撃に対する固有の堅牢性の候補である。
本研究では、勾配に基づく攻撃によるSNNの対向精度が、非スパイク攻撃よりも高いことを示す。
論文 参考訳(メタデータ) (2020-03-23T17:20:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。