論文の概要: The Path to Autonomous Learners
- arxiv url: http://arxiv.org/abs/2211.02403v1
- Date: Fri, 4 Nov 2022 12:18:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 15:41:53.403507
- Title: The Path to Autonomous Learners
- Title(参考訳): 自律学習者への道
- Authors: Hanna Abi Akl
- Abstract要約: 知的システムによるドメイン知識の獲得を可能にするための新しい理論的アプローチを提案する。
本稿では,知識グラフデータベースを通じて概念,記憶,理由の上位オントロジーという形で,最小限の入力知識から始まるハイブリッドモデルを紹介し,論理ニューラルネットワークを用いて新しい情報を学ぶ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a new theoretical approach for enabling domain
knowledge acquisition by intelligent systems. We introduce a hybrid model that
starts with minimal input knowledge in the form of an upper ontology of
concepts, stores and reasons over this knowledge through a knowledge graph
database and learns new information through a Logic Neural Network. We study
the behavior of this architecture when handling new data and show that the
final system is capable of enriching its current knowledge as well as extending
it to new domains.
- Abstract(参考訳): 本稿では,知的システムによるドメイン知識獲得を実現するための理論的アプローチを提案する。
本稿では,知識グラフデータベースを用いて概念,記憶,理由の上位オントロジーという形で,入力知識の最小化から始めて,論理ニューラルネットワークを通じて新たな情報を学ぶハイブリッドモデルを提案する。
我々は、新しいデータを扱う際に、このアーキテクチャの振る舞いを研究し、最終システムは現在の知識を豊かにし、新しいドメインに拡張できることを示す。
関連論文リスト
- Aligning Knowledge Graphs Provided by Humans and Generated from Neural Networks in Specific Tasks [5.791414814676125]
本稿では,ニューラルネットワークによる知識グラフの生成と活用を可能にする革新的な手法を提案する。
われわれのアプローチは、従来の単語の埋め込みモデルへの依存を排除し、ニューラルネットワークから概念をマイニングし、それらを人間の知識と直接整合させる。
実験により,本手法は人間の知識と密接に一致したネットワーク生成概念を連続的に捕捉し,これまでヒトが認識していなかった新しい有用な概念を発見できることがわかった。
論文 参考訳(メタデータ) (2024-04-23T20:33:17Z) - Thrill-K Architecture: Towards a Solution to the Problem of Knowledge
Based Understanding [0.9390008801320021]
本稿では、人間の知識と知性の分析に基づいて、ニューラルネットワークと様々な種類の知識と知識ソースを組み合わせたハイブリッドシステムの分類を紹介する。
我々はThrill-Kアーキテクチャを,推論,学習,知的制御が可能なフレームワークに,瞬時知識,待機知識,外部知識ソースを統合するためのプロトタイプソリューションとして提示する。
論文 参考訳(メタデータ) (2023-02-28T20:39:35Z) - Knowledge-augmented Deep Learning and Its Applications: A Survey [60.221292040710885]
知識強化ディープラーニング(KADL)は、ドメイン知識を特定し、それをデータ効率、一般化可能、解釈可能なディープラーニングのためのディープモデルに統合することを目的としている。
本調査は,既存の研究成果を補足し,知識強化深層学習の一般分野における鳥眼研究の展望を提供する。
論文 参考訳(メタデータ) (2022-11-30T03:44:15Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
ニューラルシンボリック・コンピューティング(NeSy)は、人工知能(AI)の活発な研究領域である。
NeSyは、ニューラルネットワークにおける記号表現の推論と解釈可能性の利点と堅牢な学習の整合性を示す。
論文 参考訳(メタデータ) (2022-10-28T04:38:10Z) - Semantic TrueLearn: Using Semantic Knowledge Graphs in Recommendation
Systems [22.387120578306277]
本研究は,意味的関連性を取り入れた国家認識型教育レコメンデーションシステムの構築を目指している。
本稿では,ウィキペディアリンクグラフを用いた学習リソースにおける知識コンポーネント間の意味的関連性を利用した,新しい学習モデルを提案する。
大規模データセットを用いた実験により,TrueLearnアルゴリズムの新たなセマンティックバージョンが,予測性能の面で統計的に有意な改善を実現していることが示された。
論文 参考訳(メタデータ) (2021-12-08T16:23:27Z) - Incorporation of Deep Neural Network & Reinforcement Learning with
Domain Knowledge [0.0]
本稿では,ニューラルネットワークを用いたモデル構築において,ドメイン情報を組み込んだ手法について述べる。
空間データの統合は、知識理解モデルの開発や、ヒューマン・マシン・インタフェースと強化学習を活用することで情報理解を支援する他の分野において、一意に重要である。
論文 参考訳(メタデータ) (2021-07-29T17:29:02Z) - Contextualized Knowledge-aware Attentive Neural Network: Enhancing
Answer Selection with Knowledge [77.77684299758494]
ナレッジグラフ(KG)による外部知識による回答選択モデル向上のアプローチを幅広く検討しています。
まず、KGの外部知識とテキスト情報との密接な相互作用を考慮し、QA文表現を学習するコンテキスト知識相互作用学習フレームワークであるナレッジアウェアニューラルネットワーク(KNN)を紹介します。
KG情報の多様性と複雑性に対処するために, カスタマイズされたグラフ畳み込みネットワーク (GCN) を介して構造情報を用いた知識表現学習を改善し, コンテキストベースおよび知識ベースの文表現を総合的に学習する コンテキスト型知識認識型アテンシブニューラルネットワーク (CKANN) を提案する。
論文 参考訳(メタデータ) (2021-04-12T05:52:20Z) - Towards a Universal Continuous Knowledge Base [49.95342223987143]
複数のニューラルネットワークからインポートされた知識を格納できる継続的知識基盤を構築する方法を提案する。
テキスト分類実験は有望な結果を示す。
我々は複数のモデルから知識ベースに知識をインポートし、そこから融合した知識を単一のモデルにエクスポートする。
論文 参考訳(メタデータ) (2020-12-25T12:27:44Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
関係データに対するKENNの拡張を提案する。
その結果、KENNは、存在関係データにおいても、基礎となるニューラルネットワークの性能を高めることができることがわかった。
論文 参考訳(メタデータ) (2020-09-13T21:12:20Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
動的テキスト環境における質問応答について検討する。
構築したグラフ上にグラフニューラルネットワークを構築し,エンドツーエンドでモデルをトレーニングする。
論文 参考訳(メタデータ) (2020-04-25T04:53:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。