論文の概要: Aligning Knowledge Graphs Provided by Humans and Generated from Neural Networks in Specific Tasks
- arxiv url: http://arxiv.org/abs/2404.16884v1
- Date: Tue, 23 Apr 2024 20:33:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 15:03:56.083985
- Title: Aligning Knowledge Graphs Provided by Humans and Generated from Neural Networks in Specific Tasks
- Title(参考訳): ニューラルネットワークから生成した人為的知識グラフの特定課題におけるアライメント
- Authors: Tangrui Li, Jun Zhou,
- Abstract要約: 本稿では,ニューラルネットワークによる知識グラフの生成と活用を可能にする革新的な手法を提案する。
われわれのアプローチは、従来の単語の埋め込みモデルへの依存を排除し、ニューラルネットワークから概念をマイニングし、それらを人間の知識と直接整合させる。
実験により,本手法は人間の知識と密接に一致したネットワーク生成概念を連続的に捕捉し,これまでヒトが認識していなかった新しい有用な概念を発見できることがわかった。
- 参考スコア(独自算出の注目度): 5.791414814676125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper develops an innovative method that enables neural networks to generate and utilize knowledge graphs, which describe their concept-level knowledge and optimize network parameters through alignment with human-provided knowledge. This research addresses a gap where traditionally, network-generated knowledge has been limited to applications in downstream symbolic analysis or enhancing network transparency. By integrating a novel autoencoder design with the Vector Symbolic Architecture (VSA), we have introduced auxiliary tasks that support end-to-end training. Our approach eschews traditional dependencies on ontologies or word embedding models, mining concepts from neural networks and directly aligning them with human knowledge. Experiments show that our method consistently captures network-generated concepts that align closely with human knowledge and can even uncover new, useful concepts not previously identified by humans. This plug-and-play strategy not only enhances the interpretability of neural networks but also facilitates the integration of symbolic logical reasoning within these systems.
- Abstract(参考訳): 本稿では,ニューラルネットワークが知識グラフを生成・活用するための革新的な手法を開発し,その概念レベルの知識を記述し,人為的な知識と整合してネットワークパラメータを最適化する。
この研究は、従来のネットワーク生成知識が下流のシンボリック分析やネットワーク透過性向上の応用に限られているギャップに対処する。
VSA(Vector Symbolic Architecture)に新しいオートエンコーダ設計を組み込むことで,エンド・ツー・エンドのトレーニングを支援する補助的タスクを導入した。
我々のアプローチは、オントロジーや単語埋め込みモデルへの従来の依存を排除し、ニューラルネットワークから概念をマイニングし、それらを人間の知識と直接整合させる。
実験により,本手法は,人間の知識と密接に一致したネットワーク生成概念を連続的に捕捉し,これまでヒトが認識していなかった新しい有用な概念を発見できることを示した。
このプラグアンドプレイ戦略は、ニューラルネットワークの解釈可能性を高めるだけでなく、これらのシステム内での記号的論理的推論の統合を促進する。
関連論文リスト
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
本稿では, チャンキングの原理を応用して, 人工神経集団活動の解釈を提案する。
まず、この概念を正則性を持つ人工シーケンスを訓練したリカレントニューラルネットワーク(RNN)で実証する。
我々は、これらの状態に対する摂動が関連する概念を活性化または阻害すると共に、入力における概念に対応する同様の繰り返し埋め込み状態を特定する。
論文 参考訳(メタデータ) (2025-02-03T20:30:46Z) - Concept Learning in the Wild: Towards Algorithmic Understanding of Neural Networks [2.102973349909511]
本稿では,既存のグラフニューラルネットワーク(GNN)モデルにおける概念学習について検討する。
我々の分析によると、このモデルは人間設計SAT、特に「支援」の概念と一致する重要な概念を学習している。
発見された概念は、ブラックボックスのGNNを「リバースエンジニアリング」し、ホワイトボックスの教科書アルゴリズムとして書き換える。
論文 参考訳(メタデータ) (2024-12-15T14:37:56Z) - Neural-Symbolic Reasoning over Knowledge Graphs: A Survey from a Query Perspective [55.79507207292647]
知識グラフ推論は、データマイニング、人工知能、Web、社会科学など、さまざまな分野において重要である。
ニューラルAIの台頭は、深層学習の頑健さと象徴的推論の精度を融合させることで、大きな進歩を見せている。
大規模言語モデル(LLM)の出現により、知識グラフ推論の新しいフロンティアが開かれた。
論文 参考訳(メタデータ) (2024-11-30T18:54:08Z) - Identifying Sub-networks in Neural Networks via Functionally Similar Representations [41.028797971427124]
我々は、異なるサブネットワークの存在を調査し、ネットワークの理解を自動化するための一歩を踏み出した。
具体的には、ニューラルネットワーク内の機能的に類似した表現の概念に基づく、新しい自動化されたタスク非依存のアプローチについて検討する。
提案手法は,人間と計算コストを最小限に抑えたニューラルネットワークの動作に関する有意義な洞察を提供する。
論文 参考訳(メタデータ) (2024-10-21T20:19:00Z) - A short Survey: Exploring knowledge graph-based neural-symbolic system from application perspective [0.0]
AIシステムにおけるヒューマンライクな推論と解釈可能性の実現は、依然として大きな課題である。
ニューラルネットワークをシンボリックシステムと統合するNeural-Symbolicパラダイムは、より解釈可能なAIへの有望な経路を提供する。
本稿では,知識グラフに基づくニューラルシンボリック統合の最近の進歩について考察する。
論文 参考訳(メタデータ) (2024-05-06T14:40:50Z) - From Neural Activations to Concepts: A Survey on Explaining Concepts in Neural Networks [15.837316393474403]
概念は学習と推論の自然な結びつきとして機能する。
知識はニューラルネットワークから抽出できるだけでなく、概念知識をニューラルネットワークアーキテクチャに挿入することもできる。
論文 参考訳(メタデータ) (2023-10-18T11:08:02Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
本稿では,様々な認知タスクを行う単純な人工ニューラルネットワークが採用する情報処理戦略について検討する。
結果は、ニューラルネットワークが複数の多様なタスクを学習するにつれて、シナジーが増加することを示している。
トレーニング中に無作為にニューロンを停止させると、ネットワークの冗長性が増加し、ロバスト性の増加に対応する。
論文 参考訳(メタデータ) (2022-10-06T15:36:27Z) - Knowledge-based Analogical Reasoning in Neuro-symbolic Latent Spaces [20.260546238369205]
ニューラルネットワークのパターン認識能力とシンボリック推論と背景知識を組み合わせたフレームワークを提案する。
ニューラルアルゴリズム推論」アプローチ [DeepMind 2020] からインスピレーションを得て、問題固有のバックグラウンド知識を使用します。
我々は、RAVENのプログレッシブ・マトリクスにおける視覚的類似性の問題でこれを検証し、人間のパフォーマンスと競合する精度を実現する。
論文 参考訳(メタデータ) (2022-09-19T04:03:20Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AIは、シンボリックテクニックの解釈可能性と、生データから学ぶ深層学習の能力を組み合わせることを目的としている。
本稿では,ニューラルネットワークを用いて生データから潜在概念を抽出するNSIL(Neuro-Symbolic Inductive Learner)を提案する。
NSILは表現力のある知識を学習し、計算的に複雑な問題を解き、精度とデータ効率の観点から最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-25T12:41:59Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。