論文の概要: Leveraging Statistical Shape Priors in GAN-based ECG Synthesis
- arxiv url: http://arxiv.org/abs/2211.02626v1
- Date: Sat, 22 Oct 2022 18:06:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-13 23:56:05.779085
- Title: Leveraging Statistical Shape Priors in GAN-based ECG Synthesis
- Title(参考訳): GANを用いたECG合成における統計的形状優先の活用
- Authors: Nour Neifar and Achraf Ben-Hamadou and Afef Mdhaffar and Mohamed
Jmaiel and Bernd Freisleben
- Abstract要約: GAN(Generative Adversarial Networks)に基づく新しいECG信号生成手法を提案する。
提案手法は,GANと統計ECGデータモデリングを組み合わせることで,生成プロセスにおけるECGのダイナミクスに関する事前知識を活用する。
- 参考スコア(独自算出の注目度): 3.3482093430607267
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Due to the difficulty of collecting electrocardiogram (ECG) data during
emergency situations, ECG data generation is an efficient solution for dealing
with highly imbalanced ECG training datasets. However, due to the complex
dynamics of ECG signals, the synthesis of such signals is a challenging task.
In this paper, we present a novel approach for ECG signal generation based on
Generative Adversarial Networks (GANs). Our approach combines GANs with
statistical ECG data modeling to leverage prior knowledge about ECG dynamics in
the generation process. To validate the proposed approach, we present
experiments using ECG signals from the MIT-BIH arrhythmia database. The
obtained results show the benefits of modeling temporal and amplitude
variations of ECG signals as 2-D shapes in generating realistic signals and
also improving the performance of state-of-the-art arrhythmia classification
baselines.
- Abstract(参考訳): 緊急時心電図(ecg)データの収集が困難であるため、心電図データ生成は高度に不均衡な心電図トレーニングデータセットを扱うための効率的なソリューションである。
しかし、ECG信号の複雑なダイナミクスのため、そのような信号の合成は難しい課題である。
本稿では,gans(generative adversarial networks)に基づくecg信号生成のための新しい手法を提案する。
提案手法は,GANと統計ECGデータモデリングを組み合わせることで,生成プロセスにおけるECGのダイナミクスに関する事前知識を活用する。
提案手法を検証するため,MIT-BIH不整脈データベースからのECG信号を用いた実験を行った。
その結果,心電図信号の時間的および振幅的変動を2次元形状としてモデル化し,実信号を生成することの利点と,最先端不整脈分類基準の性能の向上が得られた。
関連論文リスト
- ConvexECG: Lightweight and Explainable Neural Networks for Personalized, Continuous Cardiac Monitoring [43.23305904110984]
ConvexECGは、単誘導データから6誘導心電図を再構成するための説明可能かつ資源効率のよい方法である。
我々は、ConvexECGがより大きなニューラルネットワークに匹敵する精度を実現し、計算オーバーヘッドを大幅に削減することを示した。
論文 参考訳(メタデータ) (2024-09-19T06:14:30Z) - Electrocardiogram Report Generation and Question Answering via Retrieval-Augmented Self-Supervised Modeling [19.513904491604794]
ECG-ReGenは、ECG-to-textレポート生成と質問応答のための検索ベースのアプローチである。
事前学習と動的検索とLarge Language Model(LLM)ベースの改善を組み合わせることで、ECG-ReGenはECGデータと関連するクエリを効果的に分析する。
論文 参考訳(メタデータ) (2024-09-13T12:50:36Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - Bayesian ECG reconstruction using denoising diffusion generative models [11.603515105957461]
健常心電図(ECG)データを用いて訓練したDDGM(denoising diffusion generative model)を提案する。
以上の結果から, この革新的な生成モデルにより, 現実的なECG信号を生成できることが示唆された。
論文 参考訳(メタデータ) (2023-12-18T15:56:21Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
本稿では,ECG信号の周期的性質をモデル化する新しいECG-Segment Based Learning (ECG-SL) フレームワークを提案する。
この構造的特徴に基づき, 時間的モデルを用いて, 各種臨床業務の時間的情報学習を行う。
提案手法はベースラインモデルより優れ,3つの臨床応用におけるタスク固有手法と比較して競争性能が向上する。
論文 参考訳(メタデータ) (2023-10-01T23:17:55Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - DiffECG: A Versatile Probabilistic Diffusion Model for ECG Signals Synthesis [4.6685771141109305]
本稿では,ECG合成の拡散確率モデルに基づく新しい多元性アプローチを提案する。
本手法は、ECG合成における最初の一般化された条件付きアプローチを示す。
提案手法は、他の最先端のECG生成モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-02T19:08:31Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - ME-GAN: Learning Panoptic Electrocardio Representations for Multi-view
ECG Synthesis Conditioned on Heart Diseases [24.52989747071257]
本稿では,ME-GAN と呼ばれる多視点心電図合成のための疾患認識型生成対向ネットワークを提案する。
心臓疾患の心電図は特定の波形に局所化されることが多いため,適切な場所に病情報を正確に注入する「ミックスアップ正規化」を提案する。
総合的な実験により,ME-GANは多視点ECG信号合成において信頼性の高いモルビッド表現を用いて良好に機能することが確認された。
論文 参考訳(メタデータ) (2022-07-21T14:14:02Z) - SimGANs: Simulator-Based Generative Adversarial Networks for ECG
Synthesis to Improve Deep ECG Classification [37.73516738836885]
心電図(ECG)合成の問題点について検討した。
心臓動態を表す常微分方程式の系を用いて、生物学的に妥当な心電図トレーニング例を作成する。
論文 参考訳(メタデータ) (2020-06-27T12:17:21Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。