論文の概要: ME-GAN: Learning Panoptic Electrocardio Representations for Multi-view
ECG Synthesis Conditioned on Heart Diseases
- arxiv url: http://arxiv.org/abs/2207.10670v2
- Date: Mon, 29 May 2023 15:22:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 03:49:36.461462
- Title: ME-GAN: Learning Panoptic Electrocardio Representations for Multi-view
ECG Synthesis Conditioned on Heart Diseases
- Title(参考訳): ME-GAN: 心疾患にともなう多視点心電図合成のための心電図の学習
- Authors: Jintai Chen, Kuanlun Liao, Kun Wei, Haochao Ying, Danny Z. Chen, Jian
Wu
- Abstract要約: 本稿では,ME-GAN と呼ばれる多視点心電図合成のための疾患認識型生成対向ネットワークを提案する。
心臓疾患の心電図は特定の波形に局所化されることが多いため,適切な場所に病情報を正確に注入する「ミックスアップ正規化」を提案する。
総合的な実験により,ME-GANは多視点ECG信号合成において信頼性の高いモルビッド表現を用いて良好に機能することが確認された。
- 参考スコア(独自算出の注目度): 24.52989747071257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electrocardiogram (ECG) is a widely used non-invasive diagnostic tool for
heart diseases. Many studies have devised ECG analysis models (e.g.,
classifiers) to assist diagnosis. As an upstream task, researches have built
generative models to synthesize ECG data, which are beneficial to providing
training samples, privacy protection, and annotation reduction. However,
previous generative methods for ECG often neither synthesized multi-view data,
nor dealt with heart disease conditions. In this paper, we propose a novel
disease-aware generative adversarial network for multi-view ECG synthesis
called ME-GAN, which attains panoptic electrocardio representations conditioned
on heart diseases and projects the representations onto multiple standard views
to yield ECG signals. Since ECG manifestations of heart diseases are often
localized in specific waveforms, we propose a new "mixup normalization" to
inject disease information precisely into suitable locations. In addition, we
propose a view discriminator to revert disordered ECG views into a
pre-determined order, supervising the generator to obtain ECG representing
correct view characteristics. Besides, a new metric, rFID, is presented to
assess the quality of the synthesized ECG signals. Comprehensive experiments
verify that our ME-GAN performs well on multi-view ECG signal synthesis with
trusty morbid manifestations.
- Abstract(参考訳): 心電図(ECG)は、心臓疾患の非侵襲的診断ツールとして広く用いられている。
診断を助けるために多くの研究がECG分析モデル(例えば分類器)を考案した。
上流のタスクとして、ECGデータを合成するための生成モデルを構築し、トレーニングサンプル、プライバシ保護、アノテーションの削減を提供するのに有用である。
しかし、従来の心電図生成法では、多視点データを合成することも、心疾患の状況に対処することもなかった。
本稿では,心疾患を指標とした汎視的心電図表現を実現するme-ganと呼ばれる多視点心電図合成のための新しい疾患対応生成逆ネットワークを提案し,その表現を複数の標準ビューに投影してecg信号を生成する。
心臓疾患の心電図は特定の波形に局所化されることが多いため,適切な場所に病情報を正確に注入する「ミックスアップ正規化」を提案する。
さらに、乱れたECGビューを事前決定順序に戻すためのビュー判別器を提案し、生成器を監督して正しいビュー特性を表すECGを得る。
さらに、合成ECG信号の品質を評価するために、新しい計量rFIDが提示される。
総合的な実験により,ME-GANは多視点ECG信号合成において信頼性の高いモルビッド表現を用いて良好に機能することが確認された。
関連論文リスト
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - ECG-FM: An Open Electrocardiogram Foundation Model [3.611746032873298]
本稿では,ECG分析のためのオープン基盤モデルであるECG-FMを提案する。
ECG-FMはトランスフォーマーベースのアーキテクチャを採用し、250万のサンプルで事前訓練されている。
文脈情報のコマンドが強靭なパフォーマンス、豊富な事前学習された埋め込み、信頼性のある解釈可能性をもたらすことを示す。
論文 参考訳(メタデータ) (2024-08-09T17:06:49Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
本稿では,ECG信号の周期的性質をモデル化する新しいECG-Segment Based Learning (ECG-SL) フレームワークを提案する。
この構造的特徴に基づき, 時間的モデルを用いて, 各種臨床業務の時間的情報学習を行う。
提案手法はベースラインモデルより優れ,3つの臨床応用におけるタスク固有手法と比較して競争性能が向上する。
論文 参考訳(メタデータ) (2023-10-01T23:17:55Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - Automated Cardiovascular Record Retrieval by Multimodal Learning between
Electrocardiogram and Clinical Report [28.608260758775316]
本稿では,Large Language Models (LLM) と Vision-Transformer (ViT) モデルにおける最近のブレークスルーを活用し,ECGの解釈に新たなアプローチを導入する。
入力ECGデータに基づいて,最も類似した症例を自動的に同定する手法を提案する。
本研究は,未開発地域において診断サービスを提供する上で重要な資源となる可能性がある。
論文 参考訳(メタデータ) (2023-04-13T06:32:25Z) - Text-to-ECG: 12-Lead Electrocardiogram Synthesis conditioned on Clinical
Text Reports [6.659609788411503]
本稿では,ECG出力を生成するためにテキスト入力を使用するテキスト・ツー・ECGタスクを提案する。
本稿では,12個の心電図を合成する自動回帰生成モデルAuto-TTEを提案する。
論文 参考訳(メタデータ) (2023-03-09T11:58:38Z) - Leveraging Statistical Shape Priors in GAN-based ECG Synthesis [3.3482093430607267]
本稿では,GAN(Generative Adversarial Networks)と統計ECGデータモデリングを用いた新しいECG信号生成手法を提案する。
本手法では,ECG信号の複雑なダイナミックスに対処するため,ECGのダイナミックスに関する事前知識を活用して現実的な信号の合成を行う。
以上の結果から,ECG信号の時間的・振幅的変動を2次元形状としてモデル化した手法は,最先端のGANベースの生成ベースラインと比較して,より現実的な信号を生成することがわかった。
論文 参考訳(メタデータ) (2022-10-22T18:06:11Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
本研究では,非構造的トピック関連超音波レポート生成のための新しい因子的注意・埋め込みモデル(FAE-Gen)を提案する。
提案したFAE-Genは主に2つのモジュール、すなわちビュー誘導因子の注意とトピック指向因子の埋め込みから構成されており、異なるビューで均質および不均一な形態的特徴を捉えている。
論文 参考訳(メタデータ) (2022-03-12T15:24:03Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - SimGANs: Simulator-Based Generative Adversarial Networks for ECG
Synthesis to Improve Deep ECG Classification [37.73516738836885]
心電図(ECG)合成の問題点について検討した。
心臓動態を表す常微分方程式の系を用いて、生物学的に妥当な心電図トレーニング例を作成する。
論文 参考訳(メタデータ) (2020-06-27T12:17:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。