Fault Diagnosis for Power Electronics Converters based on Deep
Feedforward Network and Wavelet Compression
- URL: http://arxiv.org/abs/2211.02632v1
- Date: Thu, 27 Oct 2022 07:34:50 GMT
- Title: Fault Diagnosis for Power Electronics Converters based on Deep
Feedforward Network and Wavelet Compression
- Authors: Lei Kou, Chuang Liu, Guowei Cai, Zhe Zhang
- Abstract summary: A fault diagnosis method for power electronics converters based on deep feedforward network and wavelet compression is proposed in this paper.
The average accuracy of fault diagnosis classifier can reach over 97%.
- Score: 5.70513135030323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A fault diagnosis method for power electronics converters based on deep
feedforward network and wavelet compression is proposed in this paper. The
transient historical data after wavelet compression are used to realize the
training of fault diagnosis classifier. Firstly, the correlation analysis of
the voltage or current data running in various fault states is performed to
remove the redundant features and the sampling point. Secondly, the wavelet
transform is used to remove the redundant data of the features, and then the
training sample data is greatly compressed. The deep feedforward network is
trained by the low frequency component of the features, while the training
speed is greatly accelerated. The average accuracy of fault diagnosis
classifier can reach over 97%. Finally, the fault diagnosis classifier is
tested, and final diagnosis result is determined by multiple-groups transient
data, by which the reliability of diagnosis results is improved. The
experimental result proves that the classifier has strong generalization
ability and can accurately locate the open-circuit faults in IGBTs.
Related papers
- DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - TSViT: A Time Series Vision Transformer for Fault Diagnosis [2.710064390178205]
This paper presents the Time Series Vision Transformer (TSViT) for effective fault diagnosis.
TSViT incorporates a convolutional layer to extract local features from vibration signals, alongside a transformer encoder to discern long-term temporal patterns.
Remarkably, TSViT achieves an unprecedented 100% average accuracy on two test sets and 99.99% on another.
arXiv Detail & Related papers (2023-11-12T18:16:48Z) - Achieving Reliable and Fair Skin Lesion Diagnosis via Unsupervised Domain Adaptation [43.1078084014722]
Unsupervised domain adaptation (UDA) can integrate large external datasets for developing reliable classifiers.
UDA can effectively mitigate bias against minority groups and enhance fairness in diagnostic systems.
arXiv Detail & Related papers (2023-07-06T17:32:38Z) - Data-driven design of fault diagnosis for three-phase PWM rectifier
using random forests technique with transient synthetic features [2.382536770336505]
A three-phase pulse-width modulation (PWM) can usually maintain operation when opencircuit faults occur in insulated-gate bipolar transistors (IGBTs)
Data-driven online fault diagnosis method is proposed to locate the open-circuit faults of IGBTs timely effectively.
arXiv Detail & Related papers (2022-11-02T05:48:30Z) - Fault diagnosis for three-phase PWM rectifier based on deep feedforward
network with transient synthetic features [0.0]
A fault diagnosis method based on deep feedforward network with transient synthetic features is proposed.
The average fault diagnosis accuracy can reach 97.85% for transient synthetic fault data.
Online fault diagnosis experiments show that the method can accurately locate the fault IGBTs.
arXiv Detail & Related papers (2022-11-01T02:32:20Z) - Fault diagnosis for open-circuit faults in NPC inverter based on
knowledge-driven and data-driven approaches [2.22076315914821]
The open-circuit faults diagnosis and location issue of the neutral-point-clamped (NPC) inverters are analysed.
A novel fault diagnosis approach based on knowledge driven and data driven was presented for the open-circuit faults in insulated-gate bipolar transistors (IGBTs) of NPC inverter.
arXiv Detail & Related papers (2022-10-31T04:33:53Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Transfer Learning for Fault Diagnosis of Transmission Lines [55.971052290285485]
A novel transfer learning framework based on a pre-trained LeNet-5 convolutional neural network is proposed.
It is able to diagnose faults for different transmission line lengths and impedances by transferring the knowledge from a source neural network to predict a dissimilar target dataset.
arXiv Detail & Related papers (2022-01-20T06:36:35Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
A data-driven fault diagnosis and isolation scheme is explicitly developed for failure in the fuel supply system and sensor measurements.
A model is trained using machine learning classifiers to detect a given set of fault scenarios in real-time on which it is trained.
Several simulation studies were carried out to demonstrate and illustrate the proposed fault diagnosis scheme's advantages, capabilities, and performance.
arXiv Detail & Related papers (2021-10-17T13:42:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.