論文の概要: The Legal Argument Reasoning Task in Civil Procedure
- arxiv url: http://arxiv.org/abs/2211.02950v1
- Date: Sat, 5 Nov 2022 17:41:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 16:46:17.422945
- Title: The Legal Argument Reasoning Task in Civil Procedure
- Title(参考訳): 民事訴訟における法的理由づけの業務
- Authors: Leonard Bongard, Lena Held, Ivan Habernal
- Abstract要約: 我々は,米国民事訴訟の領域から新たなNLPタスクとデータセットを提示する。
データセットの各インスタンスは、ケースの一般的な導入、特定の質問、可能な解決策引数で構成されている。
- 参考スコア(独自算出の注目度): 2.079168053329397
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a new NLP task and dataset from the domain of the U.S. civil
procedure. Each instance of the dataset consists of a general introduction to
the case, a particular question, and a possible solution argument, accompanied
by a detailed analysis of why the argument applies in that case. Since the
dataset is based on a book aimed at law students, we believe that it represents
a truly complex task for benchmarking modern legal language models. Our
baseline evaluation shows that fine-tuning a legal transformer provides some
advantage over random baseline models, but our analysis reveals that the actual
ability to infer legal arguments remains a challenging open research question.
- Abstract(参考訳): 我々は,米国民事訴訟の領域から新たなNLPタスクとデータセットを提示する。
データセットの各インスタンスは、ケースの一般的な紹介、特定の質問、可能なソリューション引数から成り、そのケースに引数が適用される理由に関する詳細な分析が伴う。
データセットは法学生を対象とした本に基づいているため、現代の法律言語モデルをベンチマークする上で、本当に複雑なタスクであると考えています。
法定トランスフォーマーの微調整は,ランダムなベースラインモデルに対してある程度の利点があるが,実際の法定議論を推測する能力は,まだ未解決の課題であることが明らかとなった。
関連論文リスト
- InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Lawは、中国法に関する様々な法的クエリに対処するための特殊なLLMである。
われわれは、中国法域に100万以上のクエリを含むデータセットを慎重に構築する。
InternLM-LawはLawBench上で最高の平均性能を達成し、20サブタスク中13サブタスクでGPT-4を含む最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-21T06:19:03Z) - Empowering Prior to Court Legal Analysis: A Transparent and Accessible Dataset for Defensive Statement Classification and Interpretation [5.646219481667151]
本稿では,裁判所の手続きに先立って,警察の面接中に作成された文の分類に適した新しいデータセットを提案する。
本稿では,直感的文と真偽を区別し,最先端のパフォーマンスを実現するための微調整DistilBERTモデルを提案する。
我々はまた、法律専門家と非専門主義者の両方がシステムと対話し、利益を得ることを可能にするXAIインターフェースも提示する。
論文 参考訳(メタデータ) (2024-05-17T11:22:27Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Exploring the Potential of Large Language Models in Computational Argumentation [54.85665903448207]
大規模言語モデル (LLM) は、文脈を理解し、自然言語を生成するという印象的な能力を実証している。
この研究は、ChatGPT、Flanモデル、LLaMA2モデルなどのLLMをゼロショットと少数ショットの両方で評価することを目的としている。
論文 参考訳(メタデータ) (2023-11-15T15:12:15Z) - MUSER: A Multi-View Similar Case Retrieval Dataset [65.36779942237357]
類似事例検索(SCR)は、司法公正の促進に重要な役割を果たす代表的法的AIアプリケーションである。
既存のSCRデータセットは、ケース間の類似性を判断する際にのみ、事実記述セクションにフォーカスする。
本稿では,多視点類似度測定に基づく類似事例検索データセットMと,文レベル法定要素アノテーションを用いた包括的法定要素を提案する。
論文 参考訳(メタデータ) (2023-10-24T08:17:11Z) - Interpretable Long-Form Legal Question Answering with
Retrieval-Augmented Large Language Models [10.834755282333589]
長文の法的問合せデータセットは、専門家によるフランス語の法的質問1,868件からなる。
実験結果から,自動評価指標について有望な性能を示した。
LLeQAは、専門家によって注釈付けされた唯一の包括的なロングフォームLQAデータセットの1つであり、重要な現実世界の問題を解決するために研究を加速するだけでなく、特殊な領域におけるNLPモデルを評価するための厳密なベンチマークとしても機能する可能性がある。
論文 参考訳(メタデータ) (2023-09-29T08:23:19Z) - Towards Argument-Aware Abstractive Summarization of Long Legal Opinions
with Summary Reranking [6.9827388859232045]
本稿では,論文の議論構造を考慮した,長い法的意見の抽象的要約のための簡単なアプローチを提案する。
提案手法では、引数ロール情報を用いて複数の候補要約を生成し、文書の引数構造との整合性に基づいてこれらの候補を再分類する。
我々は、長い法的意見のデータセットにアプローチの有効性を実証し、それがいくつかの強いベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2023-06-01T13:44:45Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Legal Case Document Summarization: Extractive and Abstractive Methods
and their Evaluation [11.502115682980559]
訴訟判断文書の要約は、法律NLPにおいて難しい問題である。
法的事例文書に適用した場合の要約モデルの異なる族がどのように機能するかについては、あまり分析されていない。
論文 参考訳(メタデータ) (2022-10-14T05:43:08Z) - Enhancing Legal Argument Mining with Domain Pre-training and Neural
Networks [0.45119235878273]
文脈単語埋め込みモデルであるBERTは、限られた量の注釈付きデータで下流タスクにその能力を証明した。
BERTとその変種は、多くの学際的な研究領域における複雑なアノテーション作業の負担を軽減するのに役立つ。
論文 参考訳(メタデータ) (2022-02-27T21:24:53Z) - AR-LSAT: Investigating Analytical Reasoning of Text [57.1542673852013]
テキストの分析的推論の課題を研究し、1991年から2016年までのロースクール入学試験からの質問からなる新しいデータセットを紹介します。
我々は,この課題をうまくこなすために必要な知識理解と推論能力を分析する。
論文 参考訳(メタデータ) (2021-04-14T02:53:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。