論文の概要: Enabling Deep Learning-based Physical-layer Secret Key Generation for
FDD-OFDM Systems in Multi-Environments
- arxiv url: http://arxiv.org/abs/2211.03065v2
- Date: Fri, 16 Feb 2024 04:37:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 21:34:25.190865
- Title: Enabling Deep Learning-based Physical-layer Secret Key Generation for
FDD-OFDM Systems in Multi-Environments
- Title(参考訳): 多環境FDD-OFDMシステムの深層学習による秘密鍵生成
- Authors: Xinwei Zhang, Guyue Li, Junqing Zhang, Linning Peng, Aiqun Hu, Xianbin
Wang
- Abstract要約: 本稿では,学習に基づく問題として,複数の環境におけるPKG問題を定式化する。
本稿では,鍵生成のためのディープトランスファー学習(DTL)とメタラーニングに基づくチャネル特徴マッピングアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 27.47842642468537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based physical-layer secret key generation (PKG) has been used
to overcome the imperfect uplink/downlink channel reciprocity in frequency
division duplexing (FDD) orthogonal frequency division multiplexing (OFDM)
systems. However, existing efforts have focused on key generation for users in
a specific environment where the training samples and test samples follow the
same distribution, which is unrealistic for real-world applications. This paper
formulates the PKG problem in multiple environments as a learning-based problem
by learning the knowledge such as data and models from known environments to
generate keys quickly and efficiently in multiple new environments.
Specifically, we propose deep transfer learning (DTL) and meta-learning-based
channel feature mapping algorithms for key generation. The two algorithms use
different training methods to pre-train the model in the known environments,
and then quickly adapt and deploy the model to new environments. Simulation and
experimental results show that compared with the methods without adaptation,
the DTL and meta-learning algorithms both can improve the performance of
generated keys. In addition, the complexity analysis shows that the
meta-learning algorithm can achieve better performance than the DTL algorithm
with less cost.
- Abstract(参考訳): 深層学習に基づく物理層秘密鍵生成(PKG)は、周波数分割二重化(FDD)直交周波数分割多重化(OFDM)システムにおける不完全なアップリンク/ダウンリンクチャネルの相反性を克服するために用いられている。
しかし、既存の取り組みでは、トレーニングサンプルとテストサンプルが同じ分布に従う特定の環境において、ユーザにとって重要な生成に重点を置いている。
本稿では,複数の環境におけるPKG問題を学習に基づく問題として,既知の環境からデータやモデルなどの知識を学習し,鍵を迅速かつ効率的に生成する。
具体的には,鍵生成のためのディープトランスファー学習(DTL)とメタラーニングに基づくチャネル特徴マッピングアルゴリズムを提案する。
2つのアルゴリズムは、異なるトレーニング方法を使用して、既知の環境でモデルを事前学習し、新しい環境に素早く適応し、デプロイする。
シミュレーションおよび実験結果から,適応のない手法と比較して,DTLとメタ学習アルゴリズムの両方が生成鍵の性能を向上させることが示された。
さらに, 複雑度解析により, メタラーニングアルゴリズムはdtlアルゴリズムよりも少ないコストで優れた性能が得られることを示した。
関連論文リスト
- Advanced deep-reinforcement-learning methods for flow control: group-invariant and positional-encoding networks improve learning speed and quality [0.7421845364041001]
本研究は,流路制御のための深部強化学習法(DRL)の進歩である。
グループ不変ネットワークと位置エンコーディングをDRLアーキテクチャに統合することに注力する。
提案手法はRayleigh-B'enard対流のケーススタディを用いて検証した。
論文 参考訳(メタデータ) (2024-07-25T07:24:41Z) - BADM: Batch ADMM for Deep Learning [35.39258144247444]
勾配降下に基づくアルゴリズムはディープニューラルネットワークのトレーニングに広く用いられているが、しばしば収束が遅い。
我々は、乗算器の交互方向法(ADMM)の枠組みを利用して、バッチADMM(Batch ADMM)と呼ばれる新しいデータ駆動アルゴリズムを開発する。
我々は,グラフモデリング,コンピュータビジョン,画像生成,自然言語処理など,さまざまなディープラーニングタスクにおけるBADMの性能を評価する。
論文 参考訳(メタデータ) (2024-06-30T20:47:15Z) - Faster Adaptive Federated Learning [84.38913517122619]
フェデレートラーニングは分散データの出現に伴って注目を集めている。
本稿では,クロスサイロFLにおけるモーメントに基づく分散低減手法に基づく適応アルゴリズム(FAFED)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:07:50Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
本稿では,Long-Short-Term-Memory(LSTM)とCapsule Networksを1つのネットワークに結合した新しいNNアーキテクチャを提案する。
提案手法は教師なし学習手法を用いて大量のラベル付きトレーニングデータを見つける際の問題を克服する。
論文 参考訳(メタデータ) (2022-02-11T10:33:53Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - MetaGater: Fast Learning of Conditional Channel Gated Networks via
Federated Meta-Learning [46.79356071007187]
本稿では,バックボーンネットワークとチャネルゲーティングを協調的にトレーニングするための総合的なアプローチを提案する。
我々は,バックボーンネットワークとゲーティングモジュールの両方において,優れたメタ初期化を共同で学習するための,連携型メタ学習手法を開発した。
論文 参考訳(メタデータ) (2020-11-25T04:26:23Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。