論文の概要: A Survey on Influence Maximization: From an ML-Based Combinatorial
Optimization
- arxiv url: http://arxiv.org/abs/2211.03074v1
- Date: Sun, 6 Nov 2022 10:13:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 18:49:38.175028
- Title: A Survey on Influence Maximization: From an ML-Based Combinatorial
Optimization
- Title(参考訳): 影響の最大化に関する調査:MLに基づく組合せ最適化から
- Authors: Yandi Li, Haobo Gao, Yunxuan Gao, Jianxiong Guo, Weili Wu
- Abstract要約: 影響最大化(IM)は、モバイルネットワーク、ソーシャルコンピューティング、レコメンデーションシステムで広く用いられる古典的な最適化問題である。
主な課題は、IM問題のNP硬度と、影響力の広がりを推定する#P硬度である。
我々は,関連する背景知識,基本原則,共通手法,応用研究の要約に重点を置いている。
- 参考スコア(独自算出の注目度): 2.9882027965916413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Influence Maximization (IM) is a classical combinatorial optimization
problem, which can be widely used in mobile networks, social computing, and
recommendation systems. It aims at selecting a small number of users such that
maximizing the influence spread across the online social network. Because of
its potential commercial and academic value, there are a lot of researchers
focusing on studying the IM problem from different perspectives. The main
challenge comes from the NP-hardness of the IM problem and \#P-hardness of
estimating the influence spread, thus traditional algorithms for overcoming
them can be categorized into two classes: heuristic algorithms and
approximation algorithms. However, there is no theoretical guarantee for
heuristic algorithms, and the theoretical design is close to the limit.
Therefore, it is almost impossible to further optimize and improve their
performance. With the rapid development of artificial intelligence, the
technology based on Machine Learning (ML) has achieved remarkable achievements
in many fields. In view of this, in recent years, a number of new methods have
emerged to solve combinatorial optimization problems by using ML-based
techniques. These methods have the advantages of fast solving speed and strong
generalization ability to unknown graphs, which provide a brand-new direction
for solving combinatorial optimization problems. Therefore, we abandon the
traditional algorithms based on iterative search and review the recent
development of ML-based methods, especially Deep Reinforcement Learning, to
solve the IM problem and other variants in social networks. We focus on
summarizing the relevant background knowledge, basic principles, common
methods, and applied research. Finally, the challenges that need to be solved
urgently in future IM research are pointed out.
- Abstract(参考訳): 影響最大化(im)は古典的な組合せ最適化問題であり、モバイルネットワーク、ソーシャルコンピューティング、レコメンデーションシステムで広く使われている。
オンラインソーシャルネットワークにまたがる影響力を最大化する少数のユーザーを選択することを目的としている。
その潜在的な商業的価値と学術的価値から、異なる視点からIM問題を研究することに注力する研究者は多い。
主な課題は、im問題のnp-hardnessと影響の拡散を推定する \#p-hardness から来ているため、これらを克服するための従来のアルゴリズムは、ヒューリスティックアルゴリズムと近似アルゴリズムの2つのクラスに分類できる。
しかし、ヒューリスティックなアルゴリズムには理論的保証はなく、理論的設計は限界に近い。
したがって、パフォーマンスをさらに最適化し改善することはほぼ不可能である。
人工知能の急速な発展に伴い、機械学習(ML)に基づく技術は多くの分野で大きな成果を上げている。
これを踏まえ、近年、MLに基づく手法を用いて組合せ最適化問題を解決するために、多くの新しい手法が出現している。
これらの手法は未知グラフに対する高速解法と強力な一般化能力の利点があり、組合せ最適化問題を解くための新たな方向を提供する。
そこで我々は,従来のアルゴリズムを反復探索に基づいて放棄し,最近のMLベースの手法,特に深層強化学習(Deep Reinforcement Learning)を検証して,ソーシャルネットワークにおけるIM問題や他の変種を解決する。
我々は,関連する背景知識,基本原則,共通手法,応用研究の要約に注力する。
最後に,今後のIM研究において緊急に解決すべき課題を指摘する。
関連論文リスト
- Large Language Models for Combinatorial Optimization of Design Structure Matrix [4.513609458468522]
エンジニアリングアプリケーションの効率と性能を改善するためには、組合せ最適化(CO)が不可欠である。
実世界の工学的問題に関しては、純粋数学的推論に基づくアルゴリズムは限定的であり、最適化に必要な文脈ニュアンスを捉えることができない。
本研究では,工学的CO問題の解法におけるLarge Language Models (LLMs) の可能性について,その推論能力と文脈的知識を活用して検討する。
論文 参考訳(メタデータ) (2024-11-19T15:39:51Z) - Unraveling the Versatility and Impact of Multi-Objective Optimization: Algorithms, Applications, and Trends for Solving Complex Real-World Problems [4.023511716339818]
マルチオブジェクト最適化(MOO)技術は近年ますます人気が高まっている。
本稿では,最近開発されたMOOアルゴリズムについて検討する。
実世界のケーススタディでは、MOOアルゴリズムは複雑な意思決定課題に対処する。
論文 参考訳(メタデータ) (2024-06-29T15:19:46Z) - CHARME: A chain-based reinforcement learning approach for the minor embedding problem [16.24890195949869]
本稿では,CHARME という名前の小さな埋め込み問題に対処するために,強化学習(RL)技術を利用した新しい手法を提案する。
CHARMEには、ポリシーモデリングのためのグラフニューラルネットワーク(GNN)アーキテクチャ、ソリューションの有効性を保証する状態遷移アルゴリズム、効果的なトレーニングのための順序探索戦略の3つの重要なコンポーネントが含まれている。
詳細では、CHARME は Minorminer や ATOM のような高速な埋め込み法に比べて優れた解が得られる。
論文 参考訳(メタデータ) (2024-06-11T10:12:10Z) - Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
最適化問題に取り組むための新たな戦略は、従来のアルゴリズムに代わるグラフニューラルネットワーク(GNN)の採用である。
GNNや従来のアルゴリズムソルバがCOの領域で人気が高まっているにもかかわらず、それらの統合利用とエンドツーエンドフレームワークにおけるそれらの相関について限定的な研究がなされている。
我々は、GNNを利用してCO問題に補助的なサポートで対処する決定に焦点を当てたフレームワークを導入する。
論文 参考訳(メタデータ) (2024-06-05T22:52:27Z) - Metric Learning to Accelerate Convergence of Operator Splitting Methods for Differentiable Parametric Programming [46.26499759722771]
本稿では,識別可能な最適化が,近位尺度のエンドツーエンド学習をいかに実現するかを示す。
結果は、学習した近位度とオプティマにおけるアクティブな制約との間に強い関連性を示す。
論文 参考訳(メタデータ) (2024-04-01T03:23:43Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving [64.38649623473626]
大規模言語モデル(LLM)は人工知能の大幅な進歩を導いた。
数学的問題を解く能力を高めるために,textbfSEquential subtextbfGoal textbfOptimization (SEGO) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-19T17:56:40Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
メタヒューリスティックス(Metaheuristics)は、古典的なアプローチでは解決できない難解な問題を解くために使用される普遍的な最適化アルゴリズムである。
本稿では,キャストに基づく新しい社会認知メタヒューリスティックの構築を目標とし,このアルゴリズムのいくつかのバージョンを時間遅延システムモデルの最適化に適用する。
論文 参考訳(メタデータ) (2022-10-23T22:21:10Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
本稿では,ニューラルネットワークに基づくアルゴリズムの古典的最適化フレームワークへの導入に関する批判的分析を行う。
性能, 転送可能性, 計算コスト, 大規模インスタンスなど, これらのアルゴリズムの基本的側面を分析するために, 総合的研究を行った。
論文 参考訳(メタデータ) (2022-05-03T07:54:56Z) - A Survey for Solving Mixed Integer Programming via Machine Learning [76.04988886859871]
本稿では、混合整数(MIP)問題を解くための機械学習の動向について調査する。
本稿では、まず、MIPの定式化とプリミナリーと、MIPを解くための従来のアルゴリズムについて紹介する。
そして、機械学習とMIPアルゴリズムの異なる統合をさらに促進することを提唱する。
論文 参考訳(メタデータ) (2022-03-06T05:03:37Z) - Learning fine-grained search space pruning and heuristics for
combinatorial optimization [5.72274610208488]
本稿では,機械学習技術を利用して正確な最適化アルゴリズムをスケールアップするフレームワークを提案する。
我々のフレームワークは、問題インスタンスのサイズを減らすために、要素を刈り取るという比較的単純なタスクを学習します。
我々のフレームワークは入力グラフのかなりの部分を取り除き、なおも最大傾きのほとんどを検出可能であることを示す。
論文 参考訳(メタデータ) (2020-01-05T13:10:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。