論文の概要: Combinatorial Optimization for All: Using LLMs to Aid Non-Experts in Improving Optimization Algorithms
- arxiv url: http://arxiv.org/abs/2503.10968v1
- Date: Fri, 14 Mar 2025 00:26:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:09:31.320732
- Title: Combinatorial Optimization for All: Using LLMs to Aid Non-Experts in Improving Optimization Algorithms
- Title(参考訳): すべてに対する組合せ最適化:最適化アルゴリズムの改善における非専門家支援にLLMを使用する
- Authors: Camilo Chacón Sartori, Christian Blum,
- Abstract要約: 大規模言語モデル(LLM)は最適化アルゴリズムのためのコード生成において顕著な可能性を示している。
本稿では,アルゴリズムをスクラッチから作成するのではなく,専門知識を必要とせずに既存のものを改善する方法について検討する。
- 参考スコア(独自算出の注目度): 0.9668407688201361
- License:
- Abstract: Large Language Models (LLMs) have shown notable potential in code generation for optimization algorithms, unlocking exciting new opportunities. This paper examines how LLMs, rather than creating algorithms from scratch, can improve existing ones without the need for specialized expertise. To explore this potential, we selected 10 baseline optimization algorithms from various domains (metaheuristics, reinforcement learning, deterministic, and exact methods) to solve the classic Travelling Salesman Problem. The results show that our simple methodology often results in LLM-generated algorithm variants that improve over the baseline algorithms in terms of solution quality, reduction in computational time, and simplification of code complexity, all without requiring specialized optimization knowledge or advanced algorithmic implementation skills.
- Abstract(参考訳): 大きな言語モデル(LLM)は最適化アルゴリズムのためのコード生成において顕著な可能性を示しており、エキサイティングな新しい機会を解放しています。
本稿では,アルゴリズムをスクラッチから作成するのではなく,専門知識を必要とせずに既存のものを改善する方法について検討する。
この可能性を探るため,従来のトラベリングセールスマン問題を解くために,様々な領域(メタヒューリスティックス,強化学習,決定論的,正確な方法)から10のベースライン最適化アルゴリズムを選択した。
提案手法は, 最適化知識や高度なアルゴリズム実装スキルを必要とせず, 解法品質, 計算時間短縮, コードの複雑さの簡略化といった点において, ベースラインアルゴリズムよりも改良されたLLM生成アルゴリズムの変形をもたらすことが多い。
関連論文リスト
- Improving Existing Optimization Algorithms with LLMs [0.9668407688201361]
本稿では,Large Language Models (LLM) が既存の最適化アルゴリズムをどのように拡張するかを検討する。
事前学習した知識を用いて、革新的なバリエーションと実装戦略を提案する能力を示す。
以上の結果から, GPT-4oによる代替案はCMSAのエキスパート設計よりも優れていた。
論文 参考訳(メタデータ) (2025-02-12T10:58:57Z) - On the Design and Analysis of LLM-Based Algorithms [74.7126776018275]
大規模言語モデル(LLM)はアルゴリズムのサブルーチンとして使用される。
LLMは素晴らしい経験的成功を収めた。
提案フレームワークは,LLMアルゴリズムの進歩を約束する。
論文 参考訳(メタデータ) (2024-07-20T07:39:07Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - From Learning to Optimize to Learning Optimization Algorithms [4.066869900592636]
我々は、古典的アルゴリズムが従うが、これまでは、学習の最適化(L2O)には使われていない重要な原則を特定します。
我々は,データ,アーキテクチャ,学習戦略を考慮した汎用設計パイプラインを提供し,古典最適化とL2Oの相乗効果を実現する。
我々は,新しい学習強化BFGSアルゴリズムを設計し,テスト時に多くの設定に適応する数値実験を行うことにより,これらの新原理の成功を実証する。
論文 参考訳(メタデータ) (2024-05-28T14:30:07Z) - When Large Language Model Meets Optimization [7.822833805991351]
大規模言語モデル(LLM)は、インテリジェントなモデリングと最適化における戦略的意思決定を容易にする。
本稿では,LLMと最適化アルゴリズムの組み合わせの進展と可能性について概説する。
論文 参考訳(メタデータ) (2024-05-16T13:54:37Z) - Algorithm Evolution Using Large Language Model [18.03090066194074]
大規模言語モデル(AEL)を用いた進化的アルゴリズムを提案する。
AELはモデルトレーニングなしでアルゴリズムレベルの進化を行う。
人間の努力とドメイン知識の要求は大幅に削減できる。
論文 参考訳(メタデータ) (2023-11-26T09:38:44Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
本稿では,ニューラルネットワークに基づくアルゴリズムの古典的最適化フレームワークへの導入に関する批判的分析を行う。
性能, 転送可能性, 計算コスト, 大規模インスタンスなど, これらのアルゴリズムの基本的側面を分析するために, 総合的研究を行った。
論文 参考訳(メタデータ) (2022-05-03T07:54:56Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。