論文の概要: Direct deduction of chemical class from NMR spectra
- arxiv url: http://arxiv.org/abs/2211.03173v1
- Date: Sun, 6 Nov 2022 16:37:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 16:28:16.598566
- Title: Direct deduction of chemical class from NMR spectra
- Title(参考訳): NMRスペクトルからの化学クラスの直接推論
- Authors: Stefan Kuhn, Carlos Cobas, Agustin Barba, Simon Colreavy-Donnelly,
Fabio Caraffini, Ricardo Moreira Borges
- Abstract要約: 本稿では,NMRデータから直接化合物を分類する概念実証法を提案する。
分類に適した方法は畳み込みニューラルネットワーク(CNN)である
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a proof-of-concept method for classifying chemical
compounds directly from NMR data without doing structure elucidation. This can
help to reduce time in finding good structure candidates, as in most cases
matching must be done by a human engineer, or at the very least a process for
matching must be meaningfully interpreted by one. Therefore, for a long time
automation in the area of NMR has been actively sought. The method identified
as suitable for the classification is a convolutional neural network (CNN).
Other methods, including clustering and image registration, have not been found
suitable for the task in a comparative analysis. The result shows that deep
learning can offer solutions to automation problems in cheminformatics.
- Abstract(参考訳): 本稿では,nmrデータから化学化合物を構造解明せずに直接分類する概念実証法を提案する。
これは優れた構造候補を見つけるのにかかる時間を短縮するのに役立ちます。ほとんどの場合、マッチングは人間のエンジニアによって行われなければならず、少なくともマッチングのプロセスは1つによって意味的に解釈されなければなりません。
そのため、長い間NMR領域における自動化が求められてきた。
分類に好適であると同定された方法は畳み込みニューラルネットワーク(cnn)である。
クラスタリングや画像登録を含む他の手法は、比較分析においてタスクに適したものではない。
その結果、深層学習はケミノフォマティクスにおける自動化問題に対する解決策を提供することができた。
関連論文リスト
- Supervised Gradual Machine Learning for Aspect Category Detection [0.9857683394266679]
アスペクトカテゴリー検出(ACD)は、あるレビュー文の中で暗黙的かつ明示的な側面を識別することを目的としている。
本稿では,Deep Neural Networks (DNN) と Gradual Machine Learning (GML) を教師付き環境で組み合わせることで,ACDタスクに取り組む新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-08T07:21:46Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - From Cloze to Comprehension: Retrofitting Pre-trained Masked Language
Model to Pre-trained Machine Reader [130.45769668885487]
Pre-trained Machine Reader (PMR) は、ラベル付きデータを取得することなく、MLMを事前学習機械読解(MRC)モデルに適合させる新しい手法である。
提案したPMRを構築するために,多量の汎用および高品質なMRCスタイルのトレーニングデータを構築した。
PMRは、MRCの定式化における様々な抽出および分類タスクに対処するための統一モデルとして機能する可能性がある。
論文 参考訳(メタデータ) (2022-12-09T10:21:56Z) - Low-Resource Music Genre Classification with Cross-Modal Neural Model
Reprogramming [129.4950757742912]
ニューラルモデル再プログラミング(NMR)の概念に基づく低リソース(音楽)分類のための事前学習モデルを活用する新しい手法を提案する。
NMRは、凍結した事前学習モデルの入力を変更することにより、ソースドメインからターゲットドメインへの事前学習モデルの再取得を目指している。
実験結果から,大規模データセットに事前学習したニューラルモデルは,この再プログラミング手法を用いて,音楽ジャンルの分類に成功できることが示唆された。
論文 参考訳(メタデータ) (2022-11-02T17:38:33Z) - Programming and Training Rate-Independent Chemical Reaction Networks [9.001036626196258]
天然の生化学系は一般的に化学反応ネットワーク(CRN)によってモデル化される
CRNは合成化学計算の仕様言語として使用できる。
本稿では, NC-CRNのプログラム手法について述べる。
論文 参考訳(メタデータ) (2021-09-20T15:31:03Z) - Neural networks for Anatomical Therapeutic Chemical (ATC) [83.73971067918333]
両方向の長期記憶ネットワーク(BiLSTM)から抽出された集合を含む、特徴の異なるセットで訓練された複数の複数ラベル分類器を組み合わせることを提案する。
実験はこのアプローチのパワーを実証し、文献で報告された最良の手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2021-01-22T19:49:47Z) - Margin-Based Regularization and Selective Sampling in Deep Neural
Networks [7.219077740523683]
我々は、ディープニューラルネットワーク(DNN)のための新しいマージンベース正規化形式、MMR(Multi-margin regularization)を導出する。
CIFAR10, CIFAR100, ImageNet上で, MNLI, QQP, QNLI, MRPC, SST-2, RTEベンチマークのための最先端畳み込みニューラルネットワーク(CNN)とBERT-BASEアーキテクチャを用いて, 実験結果の改善を示す。
論文 参考訳(メタデータ) (2020-09-13T15:06:42Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search [83.22850633478302]
反合成計画(retrosynthetic planning)は、ターゲット生成物の合成に繋がる一連の反応を特定する。
既存の手法では、高いばらつきを持つロールアウトによる高価なリターン推定が必要か、品質よりも探索速度を最適化する必要がある。
本稿では,高品質な合成経路を効率よく見つけるニューラルネットワークA*ライクなアルゴリズムRetro*を提案する。
論文 参考訳(メタデータ) (2020-06-29T05:53:33Z) - Robust Classification of High-Dimensional Spectroscopy Data Using Deep
Learning and Data Synthesis [0.5801044612920815]
分光データのバイナリ分類における局所接続型ニューラルネットワーク(NN)の新たな応用を提案する。
2段階の分類プロセスは、2段階の分類パラダイムと1段階の分類パラダイムの代替として提示される。
論文 参考訳(メタデータ) (2020-03-26T11:33:52Z) - Automated Deep Abstractions for Stochastic Chemical Reaction Networks [0.0]
低レベル化学反応ネットワーク(CRN)モデルは高次元連続時間マルコフ連鎖(CTMC)を生じさせる
最近提案された抽象化手法では,このCTMCを離散時間連続空間プロセスに置き換えるためにディープラーニングを用いる。
本稿では、最適なニューラルネットワークアーキテクチャを学習することで、CRNの深い抽象化をさらに自動化することを提案する。
論文 参考訳(メタデータ) (2020-01-30T13:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。