Justification of Recommender Systems Results: A Service-based Approach
- URL: http://arxiv.org/abs/2211.03452v1
- Date: Mon, 7 Nov 2022 11:08:19 GMT
- Title: Justification of Recommender Systems Results: A Service-based Approach
- Authors: Noemi Mauro, Zhongli Filippo Hu and Liliana Ardissono
- Abstract summary: We propose a novel justification approach that uses service models to extract experience data from reviews concerning all the stages of interaction with items.
In a user study, we compared our approach with baselines reflecting the state of the art in the justification of recommender systems results.
Our models received higher Interface Adequacy and Satisfaction evaluations by users having different levels of Curiosity or low Need for Cognition (NfC)
These findings encourage the adoption of service models to justify recommender systems results but suggest the investigation of personalization strategies to suit diverse interaction needs.
- Score: 4.640835690336653
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the increasing demand for predictable and accountable Artificial
Intelligence, the ability to explain or justify recommender systems results by
specifying how items are suggested, or why they are relevant, has become a
primary goal. However, current models do not explicitly represent the services
and actors that the user might encounter during the overall interaction with an
item, from its selection to its usage. Thus, they cannot assess their impact on
the user's experience. To address this issue, we propose a novel justification
approach that uses service models to (i) extract experience data from reviews
concerning all the stages of interaction with items, at different granularity
levels, and (ii) organize the justification of recommendations around those
stages. In a user study, we compared our approach with baselines reflecting the
state of the art in the justification of recommender systems results. The
participants evaluated the Perceived User Awareness Support provided by our
service-based justification models higher than the one offered by the
baselines. Moreover, our models received higher Interface Adequacy and
Satisfaction evaluations by users having different levels of Curiosity or low
Need for Cognition (NfC). Differently, high NfC participants preferred a direct
inspection of item reviews. These findings encourage the adoption of service
models to justify recommender systems results but suggest the investigation of
personalization strategies to suit diverse interaction needs.
Related papers
- Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback.
The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied.
We focus on how the evaluation of task-oriented dialogue systems ( TDSs) is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated.
arXiv Detail & Related papers (2024-04-19T16:45:50Z) - Interactive Explanation with Varying Level of Details in an Explainable
Scientific Literature Recommender System [0.5937476291232802]
We aim in this paper to adopt a user-centered, interactive explanation model that provides explanations with different levels of detail and empowers users to interact with, control, and personalize the explanations based on their needs and preferences.
We conducted a qualitative user study to investigate the impact of providing interactive explanations with varying level of details on the users' perception of the explainable RS.
arXiv Detail & Related papers (2023-06-09T10:48:04Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
This paper empirically investigates the strengths and weaknesses of different model selection criteria.
We highlight that there is a complex interplay between selection strategies, candidate estimators and the data used for comparing them.
arXiv Detail & Related papers (2023-02-06T16:55:37Z) - PARSRec: Explainable Personalized Attention-fused Recurrent Sequential
Recommendation Using Session Partial Actions [0.5801044612920815]
We propose an architecture that relies on common patterns as well as individual behaviors to tailor its recommendations for each person.
Our empirical results on Nielsen Consumer Panel dataset indicate that the proposed approach achieves up to 27.9% performance improvement.
arXiv Detail & Related papers (2022-09-16T12:07:43Z) - Experiments on Generalizability of User-Oriented Fairness in Recommender
Systems [2.0932879442844476]
A fairness-aware recommender system aims to treat different user groups similarly.
We propose a user-centered fairness re-ranking framework applied on top of a base ranking model.
We evaluate the final recommendations provided by the re-ranking framework from both user- (e.g., NDCG) and item-side (e.g., novelty, item-fairness) metrics.
arXiv Detail & Related papers (2022-05-17T12:36:30Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systems allow users to identify trending items among a community while being timely and relevant to the user's expectations.
Deep Learning methods have been brought forward to achieve better quality recommendations.
Researchers have tried to expand on the capabilities of standard recommendation systems to provide the most effective recommendations.
arXiv Detail & Related papers (2022-05-03T22:13:33Z) - Causal Disentanglement with Network Information for Debiased
Recommendations [34.698181166037564]
Recent research proposes to debias by modeling a recommender system from a causal perspective.
The critical challenge in this setting is accounting for the hidden confounders.
We propose to leverage network information (i.e., user-social and user-item networks) to better approximate hidden confounders.
arXiv Detail & Related papers (2022-04-14T20:55:11Z) - SIFN: A Sentiment-aware Interactive Fusion Network for Review-based Item
Recommendation [48.1799451277808]
We propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation.
We first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review.
Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels.
arXiv Detail & Related papers (2021-08-18T08:04:38Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
We analyze different groups of users according to their level of activity, and find that bias exists in recommendation performance between different groups.
We show that inactive users may be more susceptible to receiving unsatisfactory recommendations, due to insufficient training data for the inactive users.
We propose a fairness constrained approach via re-ranking to mitigate this problem in the context of explainable recommendation over knowledge graphs.
arXiv Detail & Related papers (2020-06-03T05:04:38Z) - A Bayesian Approach to Conversational Recommendation Systems [60.12942570608859]
We present a conversational recommendation system based on a Bayesian approach.
A case study based on the application of this approach to emphstagend.com, an online platform for booking entertainers, is discussed.
arXiv Detail & Related papers (2020-02-12T15:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.